scholarly journals Regulation of type 3 deiodinase in rodent liver and adipose tissue during fasting

2020 ◽  
Vol 9 (6) ◽  
pp. 552-562
Author(s):  
Emmely M de Vries ◽  
Hermina C van Beeren ◽  
Albert C W A van Wijk ◽  
Andries Kalsbeek ◽  
Johannes A Romijn ◽  
...  

Fasting induces profound changes in the hypothalamus-pituitary-thyroid axis and peripheral thyroid hormone (TH) metabolism, ultimately leading to lower serum thyroid hormone (TH) concentrations. In the present study, we aimed to investigate the regulation of type 3 deiodinase (D3) during fasting in two metabolic tissues: liver and white adipose tissue (WAT). To this end, we studied the effect of modulation of the mammalian target of rapamycin (mTOR) and hypoxia inducible factor 1α (HIF1α) on D3 expression in primary rat hepatocytes and in 3T3-L1 adipocytes. In addition, we studied the role of the constitutive androstane receptor (CAR) on liver TH metabolism using primary hepatocytes and CAR-/- mice. Twenty-four-hour fasting increased liver Dio3 expression in mice. Inhibition of mTOR using mTOR inhibitors markedly induced Dio3 mRNA expression in primary hepatocytes; this increase was accompanied by a small increase in D3 activity. Stimulation of these cells with a CAR agonist induced both Dio3 mRNA expression and activity. Fasting increased hepatic D3 expression in WT but not in CAR-/- mice. In WAT, Dio3 mRNA expression increased five-fold after 48-h fasting. Treatment of 3T3-L1 adipocytes with mTOR inhibitors induced Dio3 mRNA expression, whereas stimulation of these cells with cobalt chloride, a compound that mimics hypoxia and stabilizes HIF1α, did not induce Dio3 mRNA expression. In conclusion, our results indicate an important role of mTOR in the upregulation of D3 in WAT and liver during fasting. Furthermore, CAR plays a role in the fasting induced D3 increase in the liver.

Hypertension ◽  
2000 ◽  
Vol 36 (suppl_1) ◽  
pp. 688-688
Author(s):  
Toshihiro Ichiki ◽  
Kotaro Takeda ◽  
Akira Takeshita

58 Recent studies suggest a crucial role of reactive oxygen species (ROS) for the signaling of Angiotensin II (Ang II) through type 1 Ang II receptor (AT1-R). However, the role of ROS in the regulation of AT1-R expression has not been explored. In this study, we examined the effect of an antioxidant on the homologous downregulation of AT1-R by Ang II. Ang II (10 -6 mol/L) decreased AT1-R mRNA with a peak suppression at 6 hours of stimulation in rat aortic vascular smooth muscle cells (VSMC). Ang II dose-dependently (10 -8 -10 -6 ) suppressed AT1-R mRNA at 6 hours of stimulation. Preincubation of VSMC with N-acetylcysteine (NAC), a potent antioxidant, almost completely inhibited the Ang II-induced downregulation of AT1-R mRNA. The effect of NAC was due to stabilization of the AT1-R mRNA that was destabilized by Ang II. Ang II did not affect the promoter activity of AT1-R gene. Diphenylene iodonium (DPI), an inhibitor of NADH/NADPH oxidase failed to inhibit the Ang II-induced AT1-R mRNA downregulation. The Ang II-induced AT1-R mRNA downregulation was also blocked by PD98059, an extracellular signal-regulated protein kinase (ERK) kinase inhibitor. Ang II-induced ERK activation was inhibited by NAC as well as PD98059 whereas DPI did not inhibit it. To confirm the role of ROS in the regulation of AT1-R mRNA expression, VSMC were stimulated with H 2 O 2 . H 2 O 2 suppressed the AT1-R mRNA expression and activated ERK. These results suggest that production of ROS and activation of ERK are critical for downregulation of AT1-R mRNA. The differential effect of NAC and DPI on the downregulation of AT1-R mRNA may suggest the presence of other sources than NADH/NADPH oxidase pathway for ROS in Ang II signaling. Generation of ROS through stimulation of AT1-R not only mediates signaling of Ang II but may play a crucial role in the adaptation process of AT1-R to the sustained stimulation of Ang II.


Endocrinology ◽  
1986 ◽  
Vol 119 (6) ◽  
pp. 2527-2536 ◽  
Author(s):  
FARAMARZ ISMAIL-BEIGI ◽  
RICHARD S. HABER ◽  
JOHN N. LOEB

1996 ◽  
Vol 1314 (1-2) ◽  
pp. 140-146 ◽  
Author(s):  
Mangala Shetty ◽  
Ashok K Kuruvilla ◽  
Faramarz Ismail-Beigi ◽  
John N Loeb

2003 ◽  
Vol 278 (34) ◽  
pp. 31691-31700 ◽  
Author(s):  
John T. Fassett ◽  
Diane Tobolt ◽  
Christopher J. Nelsen ◽  
Jeffrey H. Albrecht ◽  
Linda K. Hansen

1992 ◽  
Vol 285 (3) ◽  
pp. 767-771 ◽  
Author(s):  
M A Titheradge ◽  
R A Picking ◽  
R C Haynes

2-Oxoglutarate was found to inhibit purified rat liver phosphoenolpyruvate carboxykinase when the assay was performed in the direction of either phosphoenolpyruvate or oxaloacetate synthesis. The inhibition was competitive with respect to oxaloacetate or phosphoenolpyruvate, the Ki values being 0.32 +/- 0.04 mM 0.63 +/- 0.19 mM respectively. 2-Oxoglutarate inhibited non-competitively when tested against GTP or Mn2+. The reported cytosolic concentrations of 2-oxoglutarate in rat hepatocytes are such that the enzyme is likely to be significantly inhibited under basal conditions. The cytosolic concentration of 2-oxoglutarate is known to fall precipitously under the influence of glucagon and other hormones that stimulate gluconeogenesis, and it is suggested that the hormone-induced decrease in 2-oxoglutarate content would alleviate the inhibition of phosphoenolpyruvate carboxykinase and stimulate flux from oxaloacetate to phosphoenolpyruvate. The implications of this finding to the rationalization of the role of pyruvate kinase in the stimulation of gluconeogenesis in the fasted state are discussed.


Endocrinology ◽  
2012 ◽  
Vol 153 (6) ◽  
pp. 2919-2928 ◽  
Author(s):  
Arturo Hernandez ◽  
Beatriz Morte ◽  
Mónica M. Belinchón ◽  
Ainhoa Ceballos ◽  
Juan Bernal

Thyroid hormones regulate brain development and function through the control of gene expression, mediated by binding of T3 to nuclear receptors. Brain T3 concentration is tightly controlled by homeostatic mechanisms regulating transport and metabolism of T4 and T3. We have examined the role of the inactivating enzyme type 3 deiodinase (D3) in the regulation of 43 thyroid hormone-dependent genes in the cerebral cortex of 30-d-old mice. D3 inactivation increased slightly the expression of two of 22 positively regulated genes and significantly decreased the expression of seven of 21 negatively regulated genes. Administration of high doses of T3 led to significant changes in the expression of 12 positive genes and three negative genes in wild-type mice. The response to T3 treatment was enhanced in D3-deficient mice, both in the number of genes and in the amplitude of the response, demonstrating the role of D3 in modulating T3 action. Comparison of the effects on gene expression observed in D3 deficiency with those in hypothyroidism, hyperthyroidism, and type 2 deiodinase (D2) deficiency revealed that the negative genes are more sensitive to D2 and D3 deficiencies than the positive genes. This observation indicates that, in normal physiological conditions, D2 and D3 play critical roles in maintaining local T3 concentrations within a very narrow range. It also suggests that negatively and positively regulated genes do not have the same physiological significance or that their regulation by thyroid hormone obeys different paradigms at the molecular or cellular levels.


Sign in / Sign up

Export Citation Format

Share Document