scholarly journals Skeletal muscle mitochondrial function in polycystic ovarian syndrome

2011 ◽  
Vol 165 (4) ◽  
pp. 631-637 ◽  
Author(s):  
Rasmus Rabøl ◽  
Pernille F Svendsen ◽  
Mette Skovbro ◽  
Robert Boushel ◽  
Peter Schjerling ◽  
...  

ObjectivePolycystic ovarian syndrome (PCOS) is associated with skeletal muscle insulin resistance (IR), which has been linked to decreased mitochondrial function. We measured mitochondrial respiration in lean and obese women with and without PCOS using high-resolution respirometry.MethodsHyperinsulinemic–euglycemic clamps (40 mU/min per m2) and muscle biopsies were performed on 23 women with PCOS (nine lean (body mass index (BMI) <25 kg/m2) and 14 obese (BMI >25 kg/m2)) and 17 age- and weight-matched controls (six lean and 11 obese). Western blotting and high-resolution respirometry was used to determine mitochondrial function.ResultsInsulin sensitivity decreased with PCOS and increasing body weight. Mitochondrial respiration with substrates for complex I and complex I+II were similar in all groups, and PCOS was not associated with a decrease in mitochondrial content as measured by mitochondrial DNA/genomic DNA. We found no correlation between mitochondrial function and indices of insulin sensitivity.ConclusionsIn contrast to previous reports, we found no evidence that skeletal muscle mitochondrial respiration is reduced in skeletal muscle of women with PCOS compared with control subjects. Furthermore, mitochondrial content did not differ between our control and PCOS groups. These results question the causal relationship between reduced mitochondrial function and skeletal muscle IR in PCOS.

2020 ◽  
pp. 1-10
Author(s):  
M.S. Davis ◽  
M.R. Fulton ◽  
A. Popken

The skeletal muscle of exercising horses develops pronounced hyperthermia and acidosis during strenuous or prolonged exercise, with very high tissue temperature and low pH associated with muscle fatigue or damage. The purpose of this study was to evaluate the individual effects of physiologically relevant hyperthermia and acidosis on equine skeletal muscle mitochondrial function, using ex vivo measurement of oxygen consumption to assess the function of different mitochondrial elements. Fresh triceps muscle biopsies from 6 healthy unfit Thoroughbred geldings were permeabilised to permit diffusion of small molecular weight substrates through the sarcolemma and analysed in a high resolution respirometer at 38, 40, 42, and 44 °C, and pH=7.1, 6.5, and 6.1. Oxygen consumption was measured under conditions of non-phosphorylating (leak) respiration and phosphorylating respiration through Complex I and Complex II. Data were analysed using a one-way repeated measures ANOVA and data are expressed as mean ± standard deviation. Leak respiration was ~3-fold higher at 44 °C compared to 38 °C regardless of electron source (Complex I: 22.88±3.05 vs 8.08±1.92 pmol O2/mg/s), P=0.002; Complex II: 79.14±23.72 vs 21.43±11.08 pmol O2/mg/s, P=0.022), resulting in a decrease in efficiency of oxidative phosphorylation. Acidosis had minimal effect on mitochondrial respiration at pH=6.5, but pH=6.1 resulted in a 50% decrease in mitochondrial oxygen consumption. These results suggest that skeletal muscle hyperthermia decreases the efficiency of oxidative phosphorylation through increased leak respiration, thus providing a specific biochemical basis for hyperthermia-induced muscle fatigue. The effect of myocellular acidosis on mitochondrial respiration was minimal under typical levels of acidosis, but atypically severe acidosis can lead to impairment of mitochondrial function.


2019 ◽  
Vol 51 (11) ◽  
pp. 586-595 ◽  
Author(s):  
Maria F. Pino ◽  
Natalie A. Stephens ◽  
Alexey M. Eroshkin ◽  
Fanchao Yi ◽  
Andrew Hodges ◽  
...  

The effects of exercise training on the skeletal muscle (SKM) lipidome and mitochondrial function have not been thoroughly explored in individuals with Type 2 diabetes (T2D). We hypothesize that 10 wk of supervised endurance training improves SKM mitochondrial function and insulin sensitivity that are related to alterations in lipid signatures within SKM of T2D (males n = 8). We employed integrated multi-omics data analyses including ex vivo lipidomics (MS/MS-shotgun) and transcriptomics (RNA-Seq). From biopsies of SKM, tissue and primary myotubes mitochondrial respiration were quantified by high-resolution respirometry. We also performed hyperinsulinemic-euglycemic clamps and blood draws before and after the training. The lipidomics analysis revealed that endurance training (>95% compliance) increased monolysocardiolipin by 68.2% ( P ≤ 0.03), a putative marker of mitochondrial remodeling, and reduced total sphingomyelin by 44.8% ( P ≤ 0.05) and phosphatidylserine by 39.7% ( P ≤ 0.04) and tended to reduce ceramide lipid content by 19.8%. Endurance training also improved intrinsic mitochondrial respiration in SKM of T2D without alterations in mitochondrial DNA copy number or cardiolipin content. RNA-Seq revealed 71 transcripts in SKM of T2D that were differentially regulated. Insulin sensitivity was unaffected, and HbA1c levels moderately increased by 7.3% despite an improvement in cardiorespiratory fitness (V̇o2peak) following the training intervention. In summary, endurance training improves intrinsic and cell-autonomous SKM mitochondrial function and modifies lipid composition in men with T2D independently of alterations in insulin sensitivity and glycemic control.


Authorea ◽  
2020 ◽  
Author(s):  
Gita Radhakrishnan ◽  
Anshuja Singla ◽  
Mamta Jakhar ◽  
Rachna Agarwal ◽  
Anupama Tandon ◽  
...  

2016 ◽  
Vol 1857 ◽  
pp. e100-e101
Author(s):  
Giovanna Trinchese ◽  
Gina Cavaliere ◽  
Chiara De Filippo ◽  
Anna De Angelis ◽  
Antonio Della Gatta ◽  
...  

2011 ◽  
Vol 300 (4) ◽  
pp. R835-R843 ◽  
Author(s):  
Donato A. Rivas ◽  
Sarah J. Lessard ◽  
Misato Saito ◽  
Anna M. Friedhuber ◽  
Lauren G. Koch ◽  
...  

Chronic metabolic diseases develop from the complex interaction of environmental and genetic factors, although the extent to which each contributes to these disorders is unknown. Here, we test the hypothesis that artificial selection for low intrinsic aerobic running capacity is associated with reduced skeletal muscle metabolism and impaired metabolic health. Rat models for low- (LCR) and high- (HCR) intrinsic running capacity were derived from genetically heterogeneous N:NIH stock for 20 generations. Artificial selection produced a 530% difference in running capacity between LCR/HCR, which was associated with significant functional differences in glucose and lipid handling by skeletal muscle, as assessed by hindlimb perfusion. LCR had reduced rates of skeletal muscle glucose uptake (∼30%; P = 0.04), glucose oxidation (∼50%; P = 0.04), and lipid oxidation (∼40%; P = 0.02). Artificial selection for low aerobic capacity was also linked with reduced molecular signaling, decreased muscle glycogen, and triglyceride storage, and a lower mitochondrial content in skeletal muscle, with the most profound changes to these parameters evident in white rather than red muscle. We show that a low intrinsic aerobic running capacity confers reduced insulin sensitivity in skeletal muscle and is associated with impaired markers of metabolic health compared with high intrinsic running capacity. Furthermore, selection for high running capacity, in the absence of exercise training, endows increased skeletal muscle insulin sensitivity and oxidative capacity in specifically white muscle rather than red muscle. These data provide evidence that differences in white muscle may have a role in the divergent aerobic capacity observed in this generation of LCR/HCR.


Author(s):  
Lorena Orostica ◽  
Isis Astorga ◽  
Victor Garcia ◽  
Cristian Poblete ◽  
Carmen Romero ◽  
...  

2020 ◽  
Vol 318 (3) ◽  
pp. C536-C541 ◽  
Author(s):  
Stephen P. Ashcroft ◽  
Joseph J. Bass ◽  
Abid A. Kazi ◽  
Philip J. Atherton ◽  
Andrew Philp

Vitamin D deficiency has been linked to a reduction in skeletal muscle function and oxidative capacity; however, the mechanistic bases of these impairments are poorly understood. The biological actions of vitamin D are carried out via the binding of 1α,25-dihydroxyvitamin D3 (1α,25(OH)2D3) to the vitamin D receptor (VDR). Recent evidence has linked 1α,25(OH)2D3 to the regulation of skeletal muscle mitochondrial function in vitro; however, little is known with regard to the role of the VDR in this process. To examine the regulatory role of the VDR in skeletal muscle mitochondrial function, we used lentivirus-mediated shRNA silencing of the VDR in C2C12 myoblasts (VDR-KD) and examined mitochondrial respiration and protein content compared with an shRNA scrambled control. VDR protein content was reduced by ~95% in myoblasts and myotubes ( P < 0.001). VDR-KD myoblasts displayed a 30%, 30%, and 36% reduction in basal, coupled, and maximal respiration, respectively ( P < 0.05). This phenotype was maintained in VDR-KD myotubes, displaying a 34%, 33%, and 48% reduction in basal, coupled, and maximal respiration ( P < 0.05). Furthermore, ATP production derived from oxidative phosphorylation (ATPOx) was reduced by 20%, suggesting intrinsic impairments within the mitochondria following VDR-KD. However, despite the observed functional decrements, mitochondrial protein content, as well as markers of mitochondrial fission were unchanged. In summary, we highlight a direct role for the VDR in regulating skeletal muscle mitochondrial respiration in vitro, providing a potential mechanism as to how vitamin D deficiency might impact upon skeletal muscle oxidative capacity.


2020 ◽  
Vol 112 (2) ◽  
pp. 413-426 ◽  
Author(s):  
Carlijn M E Remie ◽  
Kay H M Roumans ◽  
Michiel P B Moonen ◽  
Niels J Connell ◽  
Bas Havekes ◽  
...  

ABSTRACT Background Nicotinamide riboside (NR) is an NAD+ precursor that boosts cellular NAD+ concentrations. Preclinical studies have shown profound metabolic health effects after NR supplementation. Objectives We aimed to investigate the effects of 6 wk NR supplementation on insulin sensitivity, mitochondrial function, and other metabolic health parameters in overweight and obese volunteers. Methods A randomized, double-blinded, placebo-controlled, crossover intervention study was conducted in 13 healthy overweight or obese men and women. Participants received 6 wk NR (1000 mg/d) and placebo supplementation, followed by broad metabolic phenotyping, including hyperinsulinemic-euglycemic clamps, magnetic resonance spectroscopy, muscle biopsies, and assessment of ex vivo mitochondrial function and in vivo energy metabolism. Results Markers of increased NAD+ synthesis—nicotinic acid adenine dinucleotide and methyl nicotinamide—were elevated in skeletal muscle after NR compared with placebo. NR increased body fat-free mass (62.65% ± 2.49% compared with 61.32% ± 2.58% in NR and placebo, respectively; change: 1.34% ± 0.50%, P = 0.02) and increased sleeping metabolic rate. Interestingly, acetylcarnitine concentrations in skeletal muscle were increased upon NR (4558 ± 749 compared with 3025 ± 316 pmol/mg dry weight in NR and placebo, respectively; change: 1533 ± 683 pmol/mg dry weight, P = 0.04) and the capacity to form acetylcarnitine upon exercise was higher in NR than in placebo (2.99 ± 0.30 compared with 2.40 ± 0.33 mmol/kg wet weight; change: 0.53 ± 0.21 mmol/kg wet weight, P = 0.01). However, no effects of NR were found on insulin sensitivity, mitochondrial function, hepatic and intramyocellular lipid accumulation, cardiac energy status, cardiac ejection fraction, ambulatory blood pressure, plasma markers of inflammation, or energy metabolism. Conclusions NR supplementation of 1000 mg/d for 6 wk in healthy overweight or obese men and women increased skeletal muscle NAD+ metabolites, affected skeletal muscle acetylcarnitine metabolism, and induced minor changes in body composition and sleeping metabolic rate. However, no other metabolic health effects were observed. This trial was registered at clinicaltrials.gov as NCT02835664


Sign in / Sign up

Export Citation Format

Share Document