scholarly journals Hypoinsulinaemic, hypoketotic hypoglycaemia due to mosaic genetic activation of PI3-kinase

2017 ◽  
Vol 177 (2) ◽  
pp. 175-186 ◽  
Author(s):  
Sarah M Leiter ◽  
Victoria E R Parker ◽  
Alena Welters ◽  
Rachel Knox ◽  
Nuno Rocha ◽  
...  

Objective Genetic activation of the insulin signal-transducing kinase AKT2 causes syndromic hypoketotic hypoglycaemia without elevated insulin. Mosaic activating mutations in class 1A phospatidylinositol-3-kinase (PI3K), upstream from AKT2 in insulin signalling, are known to cause segmental overgrowth, but the metabolic consequences have not been systematically reported. We assess the metabolic phenotype of 22 patients with mosaic activating mutations affecting PI3K, thereby providing new insight into the metabolic function of this complex node in insulin signal transduction. Methods Three patients with megalencephaly, diffuse asymmetric overgrowth, hypoketotic, hypoinsulinaemic hypoglycaemia and no AKT2 mutation underwent further genetic, clinical and metabolic investigation. Signalling in dermal fibroblasts from one patient and efficacy of the mTOR inhibitor Sirolimus on pathway activation were examined. Finally, the metabolic profile of a cohort of 19 further patients with mosaic activating mutations in PI3K was assessed. Results In the first three patients, mosaic mutations in PIK3CA (p.Gly118Asp or p.Glu726Lys) or PIK3R2 (p.Gly373Arg) were found. In different tissue samples available from one patient, the PIK3CA p.Glu726Lys mutation was present at burdens from 24% to 42%, with the highest level in the liver. Dermal fibroblasts showed increased basal AKT phosphorylation which was potently suppressed by Sirolimus. Nineteen further patients with mosaic mutations in PIK3CA had neither clinical nor biochemical evidence of hypoglycaemia. Conclusions Mosaic mutations activating class 1A PI3K cause severe non-ketotic hypoglycaemia in a subset of patients, with the metabolic phenotype presumably related to the extent of mosaicism within the liver. mTOR or PI3K inhibitors offer the prospect for future therapy.

2016 ◽  
Vol 29 (4) ◽  
pp. 734-741 ◽  
Author(s):  
Hui-li Feng ◽  
Hui-zi Dang ◽  
Hui Fan ◽  
Xiao-pei Chen ◽  
Ying-xue Rao ◽  
...  

Deficits in glucose, impaired insulin signalling and brain insulin resistance are common in the pathogenesis of Alzheimer’s disease (AD); therefore, some scholars even called AD type 3 diabetes mellitus. Curcumin can reduce the amyloid pathology in AD. Moreover, it is a well-known fact that curcumin has anti-oxidant and anti-inflammatory properties. However, whether or not curcumin could regulate the insulin signal transduction pathway in AD remains unclear. In this study, we used APPswe/PS1dE9 double transgenic mice as the AD model to investigate the mechanisms and the effects of curcumin on AD. Immunohistochemical (IHC) staining and a western blot analysis were used to test the major proteins in the insulin signal transduction pathway. After the administration of curcumin for 6 months, the results showed that the expression of an insulin receptor (InR) and insulin receptor substrate (IRS)-1 decreased in the hippocampal CA1 area of the APPswe/PS1dE9 double transgenic mice, while the expression of phosphatidylinositol-3 kinase (PI3K), phosphorylated PI3K (p-PI3K), serine-threonine kinase (AKT) and phosphorylated AKT (p-AKT) increased. Among the curcumin groups, the medium-dose group was the most effective one. Thus, we believe that curcumin may be a potential therapeutic agent that can regulate the critical molecules in brain insulin signalling pathways. Furthermore, curcumin could be adopted as one of the AD treatments to improve a patient’s learning and memory ability.


2019 ◽  
Author(s):  
Youde Jiang ◽  
Li Liu ◽  
Hainan Li ◽  
Jie-Mei Wang ◽  
Jena J. Steinle

AbstractRates of type 2 diabetes are reaching epidemic levels. Yet, the tissue specific alterations due to insulin resistance are only recently being investigated. The goal of the present study was to evaluate retinal insulin signal transduction in a common mouse model of type 2 diabetes, the db/db mouse. Retinal lysates from five month old male db/db and db/+ (control) mice were collected and processed for Western blotting or ELISA analyses for insulin receptor, insulin receptor substrate-1 (IRS-1), Akt, tumor necrosis factor alpha (TNFα) and caspase 3 levels. Data demonstrate increased TNFα and IRS-1 phosphorylation on serine 307. This led to decreased Akt phosphorylation on serine 473 and increased cleavage of caspase 3. Taken together, the data suggest dysfunctional insulin signaling in the retina of the db/db mouse.


2001 ◽  
Vol 29 (2) ◽  
pp. 1-14 ◽  
Author(s):  
D. R. Alessi

Historically, two strategies have been used to dissect the insulin signal transduction pathway. One was to start at the insulin receptor and work down the signal transduction pathway from the plasma membrane. The other was to select a physiological action of insulin, namely the mechanism by which insulin stimulates glycogen synthesis, and then work backwards towards the receptor. The hope was that eventually the groups working down from the top of the insulin signalling pathway would meet up with those working upwards from the bottom of the pathway. This has now happened, and in this lecture I will describe the recent advances that have linked the research from both ends of the insulin signal transduction pathway. I will also discuss how these findings have enabled pharmaceutical companies to embark on novel programmes to develop improved therapies for the treatment of diabetes in the future.


2013 ◽  
pp. 1-1
Author(s):  
Marina Minic ◽  
Nuno Rocha ◽  
Ben Challis ◽  
Matthijs Groeneveld ◽  
Stephen O Rahilly ◽  
...  

Cancers ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 815 ◽  
Author(s):  
Egle Rebane-Klemm ◽  
Laura Truu ◽  
Leenu Reinsalu ◽  
Marju Puurand ◽  
Igor Shevchuk ◽  
...  

This study aimed to characterize the ATP-synthesis by oxidative phosphorylation in colorectal cancer (CRC) and premalignant colon polyps in relation to molecular biomarkers KRAS and BRAF. This prospective study included 48 patients. Resected colorectal polyps and postoperative CRC tissue with adjacent normal tissue (control) were collected. Patients with polyps and CRC were divided into three molecular groups: KRAS mutated, BRAF mutated and KRAS/BRAF wild-type. Mitochondrial respiration in permeabilized tissue samples was observed using high resolution respirometry. ADP-activated respiration rate (Vmax) and an apparent affinity of mitochondria to ADP, which is related to mitochondrial outer membrane (MOM) permeability, were determined. Clear differences were present between molecular groups. KRAS mutated CRC group had lower Vmax values compared to wild-type; however, the Vmax value was higher than in the control group, while MOM permeability did not change. This suggests that KRAS mutation status might be involved in acquiring oxidative phenotype. KRAS mutated polyps had higher Vmax values and elevated MOM permeability as compared to the control. BRAF mutated CRC and polyps had reduced respiration and altered MOM permeability, indicating a glycolytic phenotype. To conclude, prognostic biomarkers KRAS and BRAF are likely related to the metabolic phenotype in CRC and polyps. Assessment of the tumor mitochondrial ATP synthesis could be a potential component of patient risk stratification.


2001 ◽  
Vol 193 (2) ◽  
pp. 263-270 ◽  
Author(s):  
Yoshinori Kawazoe ◽  
Tetsuji Naka ◽  
Minoru Fujimoto ◽  
Hidetsugu Kohzaki ◽  
Yoshiaki Morita ◽  
...  

Signal transducer and activator of transcription (STAT)-induced STAT inhibitor 1 (SSI-1) is known to function as a negative feedback regulator of cytokine signaling, but it is unclear whether it is involved in other biological events. Here, we show that SSI-1 participates and plays an important role in the insulin signal transduction pathway. SSI-1–deficient mice showed a significantly low level of blood sugar. While the forced expression of SSI-1 reduced the phosphorylation level of insulin receptor substrate 1 (IRS-1), SSI-1 deficiency resulted in sustained phosphorylation of IRS-1 in response to insulin. Furthermore, SSI-1 achieves this inhibition both by binding directly to IRS-1 and by suppressing Janus kinases. These findings suggest that SSI-1 acts as a negative feedback factor also in the insulin signal transduction pathway through the suppression of IRS-1 phosphorylation.


1997 ◽  
Vol 130 (1-2) ◽  
pp. 33-42 ◽  
Author(s):  
Ana C.P Thirone ◽  
Carla R.O Carvalho ◽  
Sigisfredo L Brenelli ◽  
Lı́cio A Velloso ◽  
Mario J.A. Saad

1997 ◽  
Vol 272 (36) ◽  
pp. 22884-22890 ◽  
Author(s):  
Paulos Berhanu ◽  
Celia Anderson ◽  
Matt Hickman ◽  
Theodore P. Ciaraldi

Diabetologia ◽  
2002 ◽  
Vol 45 (8) ◽  
pp. 1128-1135 ◽  
Author(s):  
Björnholm M. ◽  
Al-Khalili L. ◽  
Dicker A. ◽  
Näslund E. ◽  
Rössner S. ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document