scholarly journals The bone mass concept: problems in short stature

2004 ◽  
pp. S87-S91 ◽  
Author(s):  
E Schoenau ◽  
C Land ◽  
A Stabrey ◽  
T Remer ◽  
A Kroke

Bone densitometry is currently one of the mainstays in the evaluation of systemic bone diseases in adults and is also increasingly used to assess primary or secondary bone disorders in children and adolescents. The purpose of carrying out densitometric studies in such circumstances is to measure the densitometric indicators of bone stability. Following procedures which were established for diagnosing adult osteoporosis, a decrease in densitometric surrogates of bone stability is usually interpreted as indicating increased fracture risk. The most basic densitometric parameter is bone mineral content (BMC), which can be measured with most densitometric techniques. BMC is either defined as the mass of mineral contained in an entire bone or as the mass of mineral per unit bone length. While mineral mass can be expected to be a good surrogate for bone stability, BMC is obviously a size-dependent parameter, since small bones weigh less than big bones. This is a drawback in paediatric use, since many children and adolescents who are examined by densitometry suffer from chronic disorders and are small-for-age. Short children will have a lower BMC than their healthy age-matched peers, even if their (smaller) bones are otherwise completely normal.

1986 ◽  
Vol 27 (6) ◽  
pp. 609-617 ◽  
Author(s):  
J. Andresen ◽  
H. E. Nielsen

Methods for quantitative determination of bone mineral and bone mass in normal subjects and in patients with metabolic bone disorders can be measured by the Compton scattering technique, the neutron activation analysis, by measurement of metacarpal bone mass, by single and dual photon absorptiometry, and by quantitative computed tomography. Measurement on metacarpal bone (radiogrammetry) seems to be able to distinguish between resorption and/or new bone formation at the periosteal and/or endosteal surface. The intraindividual observer variation on combined cortical thickness (D—d), cortical area (D2–d2), metacarpal bone mass (D2–d2)/D2 varies from 0.7 to 2.5 per cent and the interindividual observer variation from 1.0 to 5.8 per cent. Single photon absorptiometry measures bone mineral content in the forearm with great precision. The reproducibility using repeated measurements and automatic selection of the measuring area is about one per cent and can be used to follow changes in mineral content with time in patients with metabolic bone diseases. The dual photon absorptiometry may be used for measurements of bone mineral content in lumbar spine, in the femoral neck and measurement of total body calcium with an accuracy of less than 6 per cent and a precision below 3 per cent. Quantitative computed tomography has the ability to measure trabecular and cortical bone both centrally and peripherally. Using CT scanning, scanner related changes with time (day-to-day variation ± 4%), patient repositioning (less than 1.5%), and fat concentration (residual uncertainty of approximately 1/6 of the biologic variation) are important factors influencing the accuracy and reproducibility of the values of the measured bone mineral content. The method is very useful in studies of skeleton changes in metabolic bone diseases.


2019 ◽  
Vol 2019 ◽  
pp. 1-10
Author(s):  
Hideki Agata ◽  
Yoshinori Sumita ◽  
Tatsuro Hidaka ◽  
Mayumi Iwatake ◽  
Hideaki Kagami ◽  
...  

Mesenchymal stem/stromal cells (MSCs) are known to be useful for treating local bone diseases. However, it is not known if MSCs are effective for treating systemic bone diseases, as the risk for mortality following intravenous MSC administration has hindered research progress. In this study, we compared the safety and efficacy of intra-bone marrow and intravenous administration of MSCs for the treatment of ovariectomy- (OVX-) induced osteoporosis. Cells capable of forming bone were isolated from the murine compact bones and expanded in culture. Relatively pure MSCs possessing increased potential for cell proliferation, osteogenic differentiation, and inhibition of osteoclastogenesis were obtained by magnetic-activated cell sorting with the anti-Sca-1 antibody. Sca-1-sorted MSCs were administered to OVX mice, which were sacrificed 1 month later. We observed that 22% of the mice died after intravenous administration, whereas none of the mice died after intra-bone marrow administration. With respect to efficacy, intravenous administration improved bone mineral density (BMD) by increasing bone mineral content without affecting bone thickness, whereas intra-bone marrow administration improved BMD by increasing both bone mineral content and bone thickness. These results indicate that intra-bone marrow administration of pure MSCs is a safer and more effective approach for treating osteoporosis.


2011 ◽  
Vol 26 (9) ◽  
pp. 2280-2286 ◽  
Author(s):  
Gitte Roende ◽  
Kirstine Ravn ◽  
Kathrine Fuglsang ◽  
Henrik Andersen ◽  
Jytte Bieber Nielsen ◽  
...  

Bone ◽  
2009 ◽  
Vol 45 ◽  
pp. S70-S71
Author(s):  
A. González de Agüero ◽  
G. Vicente-Rodríguez ◽  
I. Ara Royo ◽  
L.A. Moreno Aznar ◽  
J.A. CasajúsMallén

2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Yuntian Chu ◽  
Qianqian Zhao ◽  
Mei Zhang ◽  
Bo Ban ◽  
Hongbing Tao

Abstract Background Elevated triglyceride (TG) levels are a biomarker for cardiovascular disease (CVD) risk. The correlation between serum uric acid (SUA) and TG concentrations in adults or obese children is well established. However, studies on SUA and TG in children with short stature are limited. Aim To determine the relationship between SUA and TG levels in short children and adolescents. Method This was a cross-sectional evaluation of a cohort of 1095 patients with short stature (720 males and 375 females). The related clinical characteristics, including anthropometric and biochemical parameters, were determined. Results Smooth curve fitting, adjusted for potential confounders was performed, which indicated the existence of a non-linear relationship between these measures. Piecewise multivariate linear analysis revealed a significant positive relationship between SUA and TG at SUA concentrations over 7 mg/dL (β = 0.13, 95% CI: 0.05–0.22, P = 0.002) but no significant correlation at lower SUA levels (β = 0.01, 95% CI: 0.01–0.04, P = 0.799). Furthermore, a stratified analysis was performed to appraise changes in this relationship for different sexes and standard deviation levels of body mass index (BMI). The non-linear relationship remained consistent in males and females with BMI standard deviation scores (BMI SDS) ≥ 0, with inflection points of 6.71 mg/dL and 3.93 mg/dL, respectively. Within these two groups, SUA and TG levels showed a positive association when SUA levels were higher than the inflection point (β = 0.21, 95% CI: 0.11–0.31, P < 0.001 for males and β = 0.1, 95% CI: 0.03–0.17, P = 0.005 for females). However, a specific relationship was not observed at lower SUA levels. No significant relationships were found between SUA and TG levels in males and females with BMI SDS < 0. Conclusion The present study identified the non-linear association of SUA and TG levels with short children and adolescents. This relationship was based on BMI status. This finding suggests that health status should be considered for short stature children with high SUA levels, especially in children with a high BMI standard deviation score.


2001 ◽  
Vol 20 (5) ◽  
pp. 502-509 ◽  
Author(s):  
Lisa M. Carter ◽  
Susan J. Whiting ◽  
Donald T. Drinkwater ◽  
Gordon A. Zello ◽  
Robert A. Faulkner ◽  
...  

2010 ◽  
Vol 2010 ◽  
pp. 1-9 ◽  
Author(s):  
James J. Mason ◽  
Bart O. Williams

The study of rare human genetic disorders has often led to some of the most significant advances in biomedical research. One such example was the body of work that resulted in the identification of the Low Density Lipoprotein-Related Protein (LRP5) as a key regulator of bone mass. Point mutations were identified that encoded forms of LRP5 associated with very high bone mass (HBM). HBM patients live to a normal age and do not appear to have increased susceptibility to carcinogenesis or other disease. Thus, devising methods to mimic the molecular consequences of this mutation to treat bone diseases associated with low bone mass is a promising avenue to pursue. Two groups of agents related to putative LRP5/6 functions are under development. One group, the focus of this paper, is based on antagonizing the functions of putative inhibitors of Wnt signaling, Dickkopf-1 (DKK1), and Sclerostin (SOST). Another group of reagents under development is based on the observation that LRP5 may function to control bone mass by regulating the secretion of serotonin from the enterrochromaffin cells of the duodenum.


Sign in / Sign up

Export Citation Format

Share Document