scholarly journals Effects of Syzygium aromaticum-derived oleanolic acid administration on postprandial glucose concentration and key intestinal carbohydrate hydrolyzing enzymes of streptozotocin-induced diabetic rats

2013 ◽  
pp. 1-1
Author(s):  
Silindile Hadebe ◽  
Sinenkosi Dube ◽  
Andile Khathi ◽  
Metse Serumula ◽  
Rene Myburg ◽  
...  
1996 ◽  
Vol 134 (4) ◽  
pp. 459-466 ◽  
Author(s):  
Parri Wentzel ◽  
Ulf J Eriksson

Wentzel P, Eriksson UJ. Insulin treatment fails to abolish the teratogenic potential of serum from diabetic rats. Eur J Endocrinol 1996;134:459–66. ISSN 0804–4643 Maternal diabetes during pregnancy constitutes an increased risk for congenital malformations in the offspring. Previous studies have identified several serum components with teratogenic activity, e.g. glucose and β-hydroxybutyrate, but have also suggested that the teratogenic influence of the diabetic environment on the developing embryo is multifactorial and may depend upon changed concentrations of several maternal metabolites. In the present investigation we aimed to assess the teratological impact of small, concomitant alterations in a series of metabolites, particularly those not previously identified as teratogens. We thus investigated the influence of a mild diabetic environment by culturing gestational day-9 rat embryos in serum from insulin-treated diabetic rats for 48 h in vitro, and compared the embryonic outcome with that obtained after culture in normal serum and in serum from manifestly diabetic rats without insulin treatment. The glucose concentration was adjusted to 10 or 30 mmol/l in the cultures, and the embryos were evaluated with respect to crown–rump length, protein and DNA content, number of somites and malformation score (comparing major, minor or no malformations). We found that increased glucose levels caused embryonic maldevelopment in both normal and diabetic serum, and that despite normalization of the diabetic state, the serum from the insulin-treated diabetic rats caused more growth retardation than the nondiabetic control serum. The normalized diabetic serum was also more teratogenic than the normal serum at the low glucose concentration, whereas the serum from the manifestly diabetic rats tended to cause more dysmorphogenesis at 30 mmol/l glucose than both the normal and normalized diabetic serum. The results suggest that the teratogenicity of maternal serum in diabetic pregnancy is not mediated exclusively by increased concentrations of glucose and ketone bodies. The efforts to diminish the teratogenic effects of a diabetic environment should therefore include normalization of a multitude of serum factors, including glucose and ketone bodies. Parri Wentzel, Department of Medical Cell Biology, University of Uppsala, Biomedicum, PO Box 571, S-751 23 Uppsala, Sweden


1971 ◽  
Vol 125 (2) ◽  
pp. 541-544 ◽  
Author(s):  
R. A. Hawkins ◽  
K. G. M. M. Alberti ◽  
C. R. S. Houghton ◽  
D. H. Williamson ◽  
H. A. Krebs

1. Sodium acetoacetate was infused into the inferior vena cava of fed rats, 48h-starved rats, and fed streptozotocin-diabetic rats treated with insulin. Arterial blood was obtained from a femoral artery catheter. 2. Acetoacetate infusion caused a fall in blood glucose concentration in fed rats from 6.16 to 5.11mm in 1h, whereas no change occurred in starved or fed–diabetic rats. 3. Plasma free fatty acids decreased within 10min, from 0.82 to 0.64mequiv./l in fed rats, 1.16 to 0.79mequiv./l in starved rats and 0.83 to 0.65mequiv./l in fed–diabetic rats. 4. At 10min the plasma concentration rose from 20 to 49.9μunits/ml in fed unanaesthetized rats and from 6.4 to 18.5μunits/ml in starved rats. There was no change in insulin concentration in the diabetic rats. 5. Nembutal-anaesthetized fed rats had a more marked increase in plasma insulin concentration, from 30 to 101μunits/ml within 10min. 6. A fall in blood glucose concentration in fed rats and a decrease in free fatty acids in both fed and starved rats is to be expected as a consequence of the increase in plasma insulin. 7. The fall in the concentration of free fatty acids in diabetic rats may be due to a direct effect of ketone bodies on adipose tissue. A similar effect on free fatty acids could also be operative in normal fed or starved rats.


2016 ◽  
Vol 2016 ◽  
pp. 1-6 ◽  
Author(s):  
Yannian Wang ◽  
Fenfen Wei ◽  
Changqing Sun ◽  
Quanzhong Li

Diabetes may result in some complications and increase the risk of many serious health problems. The purpose of clinical treatment is to carefully manage the blood glucose concentration. If the blood glucose concentration is predicted, treatments can be taken in advance to reduce the harm to patients. For this purpose, an improved grey GM (1, 1) model is applied to predict blood glucose with a small amount of data, and especially in terms of improved smoothness it can get higher prediction accuracy. The original data of blood glucose of type 2 diabetes is acquired by CGMS. Then the prediction model is established. Finally, 50 cases of blood glucose from the Henan Province People’s Hospital are predicted in 5, 10, 15, 20, 25, and 30 minutes, respectively, in advance to verify the prediction model. The prediction result of blood glucose is evaluated by the EGA, MSE, and MAE. Particularly, the prediction results of postprandial blood glucose are presented and analyzed. The result shows that the improved grey GM (1, 1) model has excellent performance in postprandial blood glucose prediction.


2016 ◽  
Vol 11 (1) ◽  
pp. 200 ◽  
Author(s):  
Muhammad Kifayatullah ◽  
Pinaki Sengupta

<p class="Abstract">The purpose of this study was to evaluate the effects of <em>Pericampylus glaucus</em> extract on plasma glucose concentration and lipid profile in normal and streptozotocin-induced diabetic rats. The ethanolic extract were administered orally at three different doses (400, 600 and 800 mg/kg) and glibenclamide (20 mg/kg p.o.) for 21 days after 72 hours of streptozotocin injection. During the short- and long-term studies, the extract was found to possess significant (p&lt;0.01, p&lt;0.001) anti-diabetic activity in normal and diabetic rats compared with untreated normal and untreated diabetic group. It also caused reduction in the level of total cholesterol, triglyceride, and LDL etc. and improvement in the HDL level compared with untreated diabetic rats. Reduction in the fasting blood sugar, cholesterol, triglyceride, urea, LDL, creatinine levels and improvement in the HDL by<em> P. glaucus</em> indicates that plant has anti-diabetic activity along with anti hyperlipidemic efficacy and provides a scientific rationale for the use.</p><p> </p>


2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Charity M. Baloyi ◽  
A. Khathi ◽  
Ntethelelo H. Sibiya ◽  
Phikelelani S. Ngubane

Background. Sustained hyperglycaemia leads to the development of haematological alterations which, if left untreated, is associated with cardiovascular complications. Insulin is the mainstay drug in type 1 diabetes mellitus (T1D); however, the use of insulin is associated with haematological alterations that could further worsen cardiovascular complications. Therefore, the aim of the study was to investigate the haematological effects of oleanolic acid (OA) in streptozotocin- (STZ-) induced diabetic rats. Methods. The animals were separated into five groups; the nondiabetic group (ND), the diabetic control group (DC), and the treatment groups of insulin (170 μg/kg, s.c), metformin (500 mg/kg, p.o), and OA (80 mg/kg, p.o). OA was administered orally twice a day. Thereafter, the animals were sacrificed, and blood and tissues were collected for haematological, hormonal, and oxidative status analysis. Results. Untreated diabetic rats exhibited hyperglycaemia, elevated glycated haemoglobin (HbA1c), oxidative stress, and a reduced erythropoietin (EPO) concentration when compared to ND rats. However, administration of OA attenuated hyperglycaemia, HbA1c, and EPO concentrations compared to DC rats. The reduction of blood glucose concentration, HbA1c, and improved EPO concentrations was further associated with a notable increase in red blood cell (RBC) count and other RBC indices. We also observed an increase in the antioxidant status of the RBCs with a concomitant decrease in oxidative stress. Conclusion. These findings suggest that OA improves diabetes-induced haematological changes caused by hyperglycaemia and attenuates the progression of cardiovascular complications in DM individuals.


1991 ◽  
Vol 260 (3) ◽  
pp. E440-E446
Author(s):  
H. Miura ◽  
A. Iguchi ◽  
K. Uemura ◽  
A. Yatomi ◽  
T. Tamagawa ◽  
...  

To assess the role of the central nervous system (CNS) in carbohydrate metabolism in diabetes, neostigmine was injected into the third cerebral ventricle in fed rats with streptozotocin (STZ; 80 mg/kg)-induced diabetes under pentobarbital sodium anesthesia. Changes in hepatic venous plasma glucose concentrations were monitored. Neostigmine injection caused no significant changes in the hepatic venous plasma glucose concentration in untreated diabetic rats, whereas the glucose level increased significantly in insulin-treated diabetic rats similarly to the changes in normal control animals. In diabetic rats, the plasma levels of glucagon, epinephrine, and norepinephrine were increased significantly by neostigmine. After various doses (35-80 mg/kg) were given to rats, it was found that the higher the STZ dose, the lower was the hepatic glycogen content and the smaller was the glycemic response to neostigmine. Our results indicate that, in severe diabetes, CNS stimulation with neostigmine fails to increase hepatic glucose output, because glycogen stores are nearly exhausted and gluconeogenesis is already maximal.


Sign in / Sign up

Export Citation Format

Share Document