Low free testosterone is associated with hypogonadal symptoms in men with normal total testosterone levels: results from the European Male Ageing Study

2015 ◽  
Author(s):  
Leen Antonio ◽  
Frederic Wu ◽  
Terrence O'Neill ◽  
Stephen Pye ◽  
Emma Carter ◽  
...  
2008 ◽  
Vol 158 (3) ◽  
pp. 393-399 ◽  
Author(s):  
Els Elaut ◽  
Griet De Cuypere ◽  
Petra De Sutter ◽  
Luk Gijs ◽  
Michael Van Trotsenburg ◽  
...  

ObjectiveAn unknown proportion of transsexual women (defined as post-operative male-to-female transsexuals on oestrogen replacement) experience hypoactive sexual desire disorder (HSDD). It has been suggested that the absence of ovarian androgen production together with oestrogen treatment-related increase in sex hormone-binding globulin (SHBG) levels could be leading to HSDD, due to low levels of biologically available testosterone. This study wishes to document the HSDD prevalence among transsexual women and the possible association to androgen levels.DesignCross-sectional study.MethodsTranssexual women (n=62) and a control group of ovulating women (n=30) participated in this study. Questionnaires measuring sexual desire (sexual desire inventory) and relationship and sexual satisfaction (Maudsley Marital Questionnaire) were completed. Serum levels of total testosterone, LH and SHBG were measured in blood samples obtained at random in transsexual women and in the early follicular phase in ovulating women.ResultsThe transsexual group had lower levels of total and calculated free testosterone (both P<0.001) than the ovulating women. HSDD was reported in 34% of the transsexual and 23% of the ovulating women (P=0.30). Both groups reported similar levels of sexual desire (P=0.97). For transsexual women, no significant correlation was found between sexual desire and total (P=0.64) or free testosterone (P=0.82). In ovulating women, these correlations were significant (P=0.006, resp. P=0.003).ConclusionsHSDD is reported in one-third of transsexual women. This prevalence is not substantially different from controls, despite markedly lower (free) testosterone levels, which argues against a major role of testosterone in this specific group.


Author(s):  
Sasikala M. Chinnappan ◽  
Annie George ◽  
Pragya Pandey ◽  
Govinda Narke ◽  
Yogendra Kumar Choudhary

Background: Low testosterone levels cause physiological changes that compromise the quality of life in ageing men. A standardised water extract from the root of Eurycoma longifolia (EL), known as Physta®, is known to increase testosterone levels. Objective: To evaluate the safety and efficacy of Physta® in improving the testosterone levels and quality of life in ageing male subjects. Design: This randomised, double-blind, placebo-controlled study enrolled 105 male subjects aged 50–70 years with a testosterone level <300 ng/dL, BMI ≥ 18 and ≤30.0 kg/m2. The subjects were given either Physta® 100 mg, 200 mg or placebo daily for 12 weeks. The primary endpoints were changes in serum total and free testosterone levels. The secondary endpoints included changes in the level of sex hormone-binding globulin (SHBG), dihydroepiandrosterone (DHEA), glycated haemoglobin (HbA1c), insulin-like growth factor-1 (IGF-1), thyroid function tests (T3, T4, TSH and Free T3) and cortisol. Changes in Ageing Male Symptoms (AMS) score, Fatigue Severity Scale (FSS) score and muscle strength are other secondary endpoints. The safety of the intervention products was measured by complete blood count, lipid profile, liver and renal function tests. Results: There was a significant increase in the total testosterone levels at week 12 (P < 0.05) in the Physta® 100 mg group and at weeks 4 (P < 0.05), 8 (P < 0.01) and 12 (P < 0.001) in the Physta® 200 mg group compared to placebo. No significant between-group differences in free testosterone levels were observed but a significant within-group increase occurred at weeks 4 (P < 0.01), 8 (P < 0.001) and 12 (P < 0.001) in the Physta®100 mg group and at weeks 2 (P < 0.01), 4 (P < 0.01), 8 (P < 0.001) and 12 (P < 0.001) in the Physta® 200 mg group. The AMS and FSS showed significant reduction (P < 0.001) in total scores at all time-points within- and between-group in both Physta® groups. DHEA levels significantly increased (P < 0.05) within-group in both Physta® groups from week 2 onwards. Cortisol levels significantly (P < 0.01) decreased in the Physta® 200 mg group, while muscle strength significantly (P < 0.001) increased in both Physta® groups at week 12 in the within-group comparison. There were no significant changes in SHBG. No safety related clinically relevant changes were observed. Conclusion: Supplementation of Physta® at 200 mg was able to increase the serum total testosterone, reduce fatigue and improve the quality of life in ageing men within 2 weeks’ time. Trial registration: This clinical study has been registered in ctri.nic.in (CTRI/2019/03/017959).


Urology ◽  
2015 ◽  
Vol 86 (2) ◽  
pp. 287-290 ◽  
Author(s):  
Ranjith Ramasamy ◽  
Ron Golan ◽  
Nathan Wilken ◽  
Jason M. Scovell ◽  
Larry I. Lipshultz

2008 ◽  
Vol 2 (4) ◽  
pp. 289-293
Author(s):  
Cristiana Roscito Arenella Dusi ◽  
Lílian Schafirovits Morillo ◽  
Regina Miksian Magaldi ◽  
Adriana Nunes Machado ◽  
Sami Liberman ◽  
...  

Abstract Evidence suggests low testosterone levels in Alzheimer's disease. Objectives: To compare testosterone levels between older men with and without Alzheimer's disease. Methods: Fourteen men with Alzheimer's disease were compared with twenty eight men without dementia. Demographic variables and clinical profiles were analyzed. Within fifteen days before or after the described evaluation, measures of total testosterone and Sex Hormone Binding Globulin (SHBG) were performed. Free testosterone level was calculated based on total testosterone and SHBG. Quantitative variables were analyzed using Student's t test or Kruskal-Wallis test, while qualitative variables were analyzed using chi-square or Fisher test. Results: Mean age in the Control and Alzheimer's disease groups were 72.0 (SD±4.8) years and 79.3(SD±5.9) years, respectively (p=0.001). Mean schooling between these two groups were 8.78 and (±5.86) years, respectively (p=0.022). There were no statistically significant differences between the two groups for testosterone levels, although a trend was observed for the Alzheimer's disease group to present lower levels than the control group (p=0.066). There was no direct correlation between free testosterone and age, although a trend was evident (p=0.068). Conclusions: There was no significant difference in testosterone between men with AD and those without dementia.


2005 ◽  
Vol 62 (1) ◽  
pp. 64-73 ◽  
Author(s):  
Beth A. Mohr ◽  
Andre T. Guay ◽  
Amy B. O'Donnell ◽  
John B. McKinlay

2020 ◽  
Vol 35 (7) ◽  
pp. 1693-1701 ◽  
Author(s):  
Stine Agergaard Holmboe ◽  
Lærke Priskorn ◽  
Tina Kold Jensen ◽  
Niels Erik Skakkebaek ◽  
Anna-Maria Andersson ◽  
...  

Abstract STUDY QUESTION Are use of e-cigarettes and snuff associated with testicular function as previously shown for conventional cigarettes and marijuana? SUMMARY ANSWER Use of e-cigarettes is associated with reduced semen quality but not with higher serum testosterone level as observed for conventional cigarette use. Snuff use was not associated with markers of testicular function. WHAT IS KNOWN ALREADY Cigarette smoking has previously been associated with higher testosterone levels and impaired semen quality, whereas it is unresolved whether use of e-cigarettes or snuff influence the testicular function. STUDY DESIGN, SIZE, DURATION This cross-sectional population-based study included 2008 men with information on cigarette and marijuana use (enrolled between 2012 and 2018), among whom 1221 men also had information on e-cigarette and snuff use (enrolled between 2015 and 2018). PARTICIPANTS/MATERIALS, SETTING, METHODS Men (median age 19.0 years) from the general population provided a semen and blood sample and filled out a questionnaire on lifestyle including information on smoking behaviour. Associations between different types of smoking (e-cigarettes, snuff, marijuana and cigarettes) and reproductive hormones (total and free testosterone, sex hormone-binding globulin, LH, oestradiol and ratios of inhibin B/FSH, testosterone/LH and free testosterone/LH) and semen parameters (total sperm count and sperm concentration) were examined using multiple linear regression analyses adjusted for relevant confounders. MAIN RESULTS AND THE ROLE OF CHANCE Approximately half of the men (52%) were cigarette smokers, 13% used e-cigarettes, 25% used snuff and 33% used marijuana. Users of e-cigarettes and marijuana were often also cigarette smokers. Compared to non-users, daily e-cigarette users had significantly lower total sperm count (147 million vs 91 million) as did daily cigarette smokers (139 million vs 103 million), in adjusted analyses. Furthermore, significantly higher total and free testosterone levels were seen in cigarette smoking men (6.2% and 4.1% higher total testosterone and 6.2% and 6.2% higher free testosterone in daily smokers and occasional smokers, respectively, compared to non-smoking men), but not among e-cigarette users. Daily users of marijuana had 8.3% higher total testosterone levels compared to non-users. No associations were observed for snuff in relation to markers of testicular function. LIMITATIONS, REASONS FOR CAUTION We cannot exclude that our results can be influenced by residual confounding by behavioural factors not adjusted for. The number of daily e-cigarette users was limited and findings should be replicated in other studies. WIDER IMPLICATIONS OF THE FINDINGS This is the first human study to indicate that not only cigarette smoking but also use of e-cigarettes is associated with lower sperm counts. This could be important knowledge for men trying to achieve a pregnancy, as e-cigarettes are often considered to be less harmful than conventional cigarette smoking. STUDY FUNDING/COMPETING INTEREST(S) Funding was received from the Danish Ministry of Health (1-1010-308/59), the Independent Research Fund Denmark (8020-00218B), ReproUnion (20200407) and the Research Fund of the Capital Region of Denmark (A6176). The authors have nothing to disclose. TRIAL REGISTRATION NUMBER NA


2019 ◽  
Vol 8 (8) ◽  
pp. 1136
Author(s):  
Daniel Castellano-Castillo ◽  
José Luis Royo ◽  
Ana Martínez-Escribano ◽  
Lidia Sánchez-Alcoholado ◽  
María Molina-Vega ◽  
...  

Introduction: Obesity has been associated with increased risk of presenting hypogonadism. Free testosterone (FT) is the fraction of testosterone that carries out the biological function of testosterone, and is determined from total testosterone (TT) and sex-hormone binding globulin (SHBG) levels. We aimed to study the SHBG polymorphism rs1799941 in a cohort of young non-diabetic obese males to unravel the possible implication of this polymorphism in obesity-related hypogonadism. Methodology: 212 young (<45 years) non-diabetic obese (BMI ≥ 30 kg/m2) males participated in this study. Subjects were classified according to TT and FT levels in: Eugonadal (n = 55, TT > 3.5 ng/mL and FT ≥ 70 pg/mL; EuG), normal FT hypogonadism (n = 40, TT < 3.5 and FT ≥ 70 pg/mL; normal FT HG) and hypogonadism (n = 117, TT < 3.5 ng/mL and TL < 70 pg/mL; HG). The SHBG rs1799941 polymorphism (GG/GA/AA) was analyzed using the Taqman Open Array (Applied biosystem). Results: The rs1799941 frequencies were different among the groups. Higher proportion of the allele (A) was found in HG, compared to EuG and normal FT HG. Among the genotypes, the rare homozygous (AA) were found in the normal FT HG group and higher levels of serum SHBG and lower of FT were observed. The presence of the allele A was related (according to lineal regression models) to an increased of SHBG levels ((GA) β = 3.28; (AA) β = 12.45) and a decreased of FT levels ((GA) β = −9.19; (AA) β = −18.52). The presence of the allele (A) increased the risk of presenting HG compared to normal FT HG (OR = 2.54). Conclusions: The rs1799941 of the SHBG gene can partially determine the presence of obesity-related hypogonadism in young non-diabetic males and whether these subjects have normal FT HG.


2017 ◽  
Vol 50 (01) ◽  
pp. 73-79 ◽  
Author(s):  
Hiroshi Kumagai ◽  
Toru Yoshikawa ◽  
Asako Zempo-Miyaki ◽  
Kanae Myoenzono ◽  
Takehiko Tsujimoto ◽  
...  

AbstractTestosterone is a male sex hormone and low circulating testosterone levels are associated with various health disorders in men. Obesity results in reduced circulating testosterone levels in men. Previously, we demonstrated that lifestyle modifications (combination of aerobic exercise and dietary modification) increase circulating testosterone levels in overweight/obese men. However, the effect of regular aerobic exercise on serum testosterone levels remains unclear. The purpose of this study was to investigate the effect of a 12-week aerobic exercise intervention on circulating testosterone levels in normal-weight and overweight/obese men. Sixteen normal-weight men and twenty-eight overweight/obese men completed a 12-week aerobic exercise intervention. Before and after the intervention, we measured serum total testosterone, free testosterone, and bioavailable testosterone levels, and categorized the physical activity levels (light, moderate, or vigorous) in all participants. At baseline, serum total testosterone, free testosterone, and bioavailable testosterone levels were significantly lower in overweight/obese men than in normal-weight men (all p<0.01). After the 12-week aerobic exercise intervention, serum total testosterone, free testosterone, and bioavailable testosterone levels significantly increased in overweight/obese men (p<0.01). In addition, stepwise multivariable linear regression analysis revealed the increase in vigorous physical activity was independently associated with increased serum total testosterone levels (β=0.47, p=0.011). We demonstrated that a 12-week aerobic exercise intervention increased serum total testosterone, free testosterone, and bioavailable testosterone levels in overweight/obese men. We suggest that an increase in vigorous physical activity increased circulating testosterone levels in overweight/obese men.


2008 ◽  
Vol 93 (5) ◽  
pp. 1834-1840 ◽  
Author(s):  
Mathis Grossmann ◽  
Merlin C. Thomas ◽  
Sianna Panagiotopoulos ◽  
Ken Sharpe ◽  
Richard J. MacIsaac ◽  
...  

Abstract Context: Low testosterone levels are common in men with type 2 diabetes and may be associated with insulin resistance. Objective: We investigated prevalence of testosterone deficiency and the relationship between testosterone and insulin resistance in a large cohort of men with type 2 and type 1 diabetes. Design: The study was a cross-sectional survey of 580 men with type 2 diabetes and 69 men with type 1 diabetes. A subgroup of 262 men with type 2 diabetes was then reassessed after a median of 6 months. Results: Forty-three percent of men with type 2 diabetes had a reduced total testosterone, and 57% had a reduced calculated free testosterone. Only 7% of men with type 1 diabetes had low total testosterone. By contrast, 20.3% of men with type 1 diabetes had low calculated free testosterone, similar to that observed in type 2 diabetes (age-body mass index adjusted odds ratio = 1.4; 95% confidence interval = 0.7–2.9). Low testosterone levels were independently associated with insulin resistance in men with type 1 diabetes as well as type 2 diabetes. Serial measurements also revealed an inverse relationship between changes in testosterone levels and insulin resistance. Conclusions: Testosterone deficiency is common in men with diabetes, regardless of the type. Testosterone levels are partly influenced by insulin resistance, which may represent an important avenue for intervention, whereas the utility of testosterone replacement remains to be established in prospective trials.


Sign in / Sign up

Export Citation Format

Share Document