scholarly journals Pluripotency-associated stem cell marker expression in proliferative cell cultures derived from adult human pancreas

2011 ◽  
Vol 211 (2) ◽  
pp. 169-176 ◽  
Author(s):  
Michael G White ◽  
Hussain R Al-Turaifi ◽  
Graham N Holliman ◽  
Ali Aldibbiat ◽  
Aiman Mahmoud ◽  
...  

The source of new β-cells in adult human pancreas remains incompletely elucidated with recent studies on rodents providing evidence for neogenesis from progenitor cells in addition to self-replication. The aim of this study was to investigate the expression of pluripotency-associated stem cell markers in proliferative cultures derived from adult human pancreas. Human pancreatic tissue was obtained from deceased donors following ethical approval and relative consent. Islet-enriched fraction was separated from the retrieved organ by digestion and density gradient centrifugation. Dissociated cells were seeded in adherent culture forming proliferative ‘islet survivor cells’ (ISCs). These were characterised at fifth passage by RT-PCR, immunofluorescence staining, FACS, western blot and transfection studies with an OCT4 promoter-driven reporter. Nuclear expression of the pluripotency-associated stem cell marker complex OCT4/SOX2/NANOG was confirmed in ISCs. The phenotype constituted ∼8% of the overall population. OCT4 biosynthesis was confirmed by western blot and activation of an exogenous OCT4 promoter. Co-expression of pluripotency-associated markers has been confirmed in proliferative primary cells derived from adult human pancreas. Further studies are required to elucidate whether these cells possess functional stem cell characteristics and assess potential for differentiation into pancreatic cell lineages including new β-cells.

2007 ◽  
Vol 195 (3) ◽  
pp. 407-414 ◽  
Author(s):  
Min Zhao ◽  
Stephanie A Amiel ◽  
Michael R Christie ◽  
Paolo Muiesan ◽  
Parthi Srinivasan ◽  
...  

The origin of cells replacing ageing β-cells in adult life is unknown. This study assessed the expression of classic stem cell markers: Oct4, Sox2 and CD34 in islet-enriched fractions versus exocrine cell-enriched fractions from 25 adult human pancreases following human islet isolation. Expression of Oct4, Sox2 and CD34 mRNAs was found in all cell samples, with no significant differences between endocrine and exocrine cell fractions. Immunohistochemical staining for Oct4, Sox2, CD133, CD34, CK19, insulin and nestin on human pancreas sections showed that the majority of Oct4+ve cells were found in the walls of small ducts. Similar localisations were observed for Sox2+ve cells. The majority of Sox2+ve cells were found to co-express Oct4 proteins, but not vice versa. Cells positive for Oct4 and Sox2 appeared to be a unique cell population in the adult human pancreases without co-expression for CK19, CD34, CD133, insulin and nestin proteins. The numbers of Oct4+ve and Sox2+ve cells varied among donors and were ∼1–200 and 1–30 per 100 000 pancreatic cells respectively.


Pancreas ◽  
2008 ◽  
Vol 36 (1) ◽  
pp. e1-e6 ◽  
Author(s):  
Jessy Lardon ◽  
Denis Corbeil ◽  
Wieland B. Huttner ◽  
Zhidong Ling ◽  
Luc Bouwens

Gene ◽  
2013 ◽  
Vol 525 (1) ◽  
pp. 18-25 ◽  
Author(s):  
Chen Wu ◽  
Yuanyuan Xie ◽  
Feng Gao ◽  
Yanan Wang ◽  
Yawei Guo ◽  
...  

Cancers ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 3654
Author(s):  
Rebecca Pötschke ◽  
Jacob Haase ◽  
Markus Glaß ◽  
Sebastian Simmermacher ◽  
Claudia Misiak ◽  
...  

The stem cell marker Musashi1 (MSI1) is highly expressed during neurogenesis and in glioblastoma (GBM). MSI1 promotes self-renewal and impairs differentiation in cancer and non-malignant progenitor cells. However, a comprehensive understanding of its role in promoting GBM-driving networks remains to be deciphered. We demonstrate that MSI1 is highly expressed in GBM recurrences, an oncologist’s major defiance. For the first time, we provide evidence that MSI1 promotes the expression of stem cell markers like CD44, co-expressed with MSI1 within recurrence-promoting cells at the migrating front of primary GBM samples. With GBM cell models of pediatric and adult origin, including isolated primary tumorspheres, we show that MSI1 promotes stem cell-like characteristics. Importantly, it impairs CD44 downregulation in a 3′UTR- and miRNA-dependent manner by controlling mRNA turnover. This regulation is disturbed by the previously reported MSI1 inhibitor luteolin, providing further evidence for a therapeutic target potential of MSI1 in GBM treatment.


2004 ◽  
Vol 319 (1) ◽  
pp. 15-26 ◽  
Author(s):  
Mareike Florek ◽  
Michael Haase ◽  
Anne-Marie Marzesco ◽  
Daniel Freund ◽  
Gerhard Ehninger ◽  
...  

2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Cagdas Sahin ◽  
Ozlem Yilmaz Dilsiz ◽  
Sirin Bakti Demiray ◽  
Ozgur Yeniel ◽  
Mete Ergenoglu ◽  
...  

Background. The aim of this study is to determine the effects of zinc and/or progesterone via the expression ofαvβ5 integrins and Vitronectins and embryonic stem cell markers during the peri-implantation period.Methods. Four experimental groups were organized. All subjects were mated with males of the same strain to induce pregnancy; after 5 days, zinc and/or progesterone were administered. Blood levels of zinc and progesterone were determined on the sixth day and endometrial tissues were obtained in order to evaluate the immunohistochemical expression of integrins and embryonic stem cell markers.Results. Theαvβ5 integrin and vitronectin expression increased in the zinc group compared with the control group and no difference in the progesterone group and zinc + progesterone group. Expression of Klf-4, Sox-2, and c-Myc was found to be increased in the zinc group compared to controls, while no difference was determined between the progesterone, zinc + progesterone, and control groups. Distinctively, expression of the embryonic stem cell marker Oct-4 was increased in all of the experimental groups.Conclusions. Expression ofαvβ5 integrin, vitronectin, and embryonic stem cell markers might be increased by the administration of zinc. Our results suggest that zinc could be useful in the induction of implantation rates.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 4303-4303
Author(s):  
Laura R. Goldberg ◽  
Mark S Dooner ◽  
Yanhui Deng ◽  
Elaine Papa ◽  
Mandy Pereira ◽  
...  

Abstract The study of highly purified hematopoietic stem cells (HSCs) has dominated the field of hematopoietic stem cell biology. It is widely believed that the true stem cell population lies within the Lineage negative (Lin-) population, further sub-fractionated using positive and negative selection for surface markers such as c-Kit, Sca-1, CD150, CD41, CD48, and CD34. It is research on these highly purified subsets of HSCs that forms the foundation for almost all our knowledge of HSCs, and has led to the dogma that marrow stem cells are quiescent with a stable phenotype and therefore can be purified to near homogeneity. In contrast, we have shown that a large percentage of long-term multi-lineage marrow repopulating cells in whole bone marrow (WBM) are actively cycling, that these cycling stem cells are lost during conventional HSC isolation, and that they can be found, in part, within the discarded Lineage positive (Lin+) population. Here we present data further characterizing the stem cell potential in the Lin+ fraction. We incubated WBM from B6.SJL mice with fluorescently tagged antibodies directed against TER119, B220, or T-cell markers (CD3, CD4, CD8), isolated the distinct Lin+ subsets by FACS, and then competitively engrafted each Lin+ subset into lethally irradiated C57BL/6 host mice. Donor chimerism and lineage specificity of donor cells in peripheral blood were analyzed by flow cytometry at 3 months. Although classically considered devoid of stem cell activity, we found that, when competed against equal numbers of C57BL/6 WBM, the TER119+ and B220+ B6.SJL donor cells contributed to 33% and 13% of the peripheral blood chimerism, respectively. In both cases, the engraftment was multi-lineage. When 70,000 T cell marker+ donor cells were competed with 300,000 C57BL/6 WBM, the donor cells contributed up to 1.6% of the peripheral blood multi-lineage chimerism. Given the size of the Lin+ fraction in WBM, such chimerism indicates a significant stem cell potential within this typically discarded population. Further time-points, secondary transplants and limited dilution studies are in progress to further define the prevalence and potency of this stem cell population. We have been testing mechanisms governing the loss of this stem cell population during HSC purification. First, we have previously shown that bulk Lin+ engraftment potential is due to cycling stem cells. We hypothesize that fluctuations in surface epitope expression with cell cycle transit render this population difficult to isolate with antibody-mediated strategies that rely on stable epitope expression. To begin testing this, we tracked the fluctuation of stem cell markers on Lin- cells in vitro. We isolated Lin- cells that were also negative for the stem cell markers c-Kit and Sca-1, placed them in liquid culture and, 18 hours later, re-assessed for stem cell marker expression by flow cytometry. We found that, although initially stem cell marker negative, up to 6%, 14%, and 2% of the Lin-/stem cell marker negative cells became positive for c-Kit alone, Sca-1 alone, or both c-Kit and Sca-1 expression, respectively. We are currently testing this population for a correlation between gain of c-Kit- and Sca-1 expression and stem cell function. Second, it is possible that there is a distinct subset of HSCs that are positive for both Lin+ markers and stem cell markers with stable stem cell capacity and that these distinct stem cells are thrown out in the process of lineage depletion. To begin testing this hypothesis, we have simultaneously stained WBM with antibodies directed against the Lin+ markers and conventional stem cell markers. Our preliminary data indicate that each Lin+ fraction tested to date has a subpopulation that is also positive for c-Kit and Sca-1. For example, 21% of CD3+ cells, 6.2% of CD4+ cells, 2.26% of CD8+ cells, 0.5% of B220+, and 0.45% of TER119+ cells express both c-Kit and Sca-1. We suspect these two populations have distinct functional phenotypes and experiments characterizing the molecular phenotype and engraftment capacity of these subpopulations are ongoing. In sum, our data indicate that stem cell purification skews isolation towards a small population of quiescent stem cells, underrepresenting a potentially large pool of actively cycling HSCs that are found within the Lin+ fraction. These data underscore the need to re-evaluate the total hematopoietic stem cell potential in marrow on a population level. Disclosures No relevant conflicts of interest to declare.


2019 ◽  
Vol 12 (3) ◽  
pp. 1403-1416
Author(s):  
Khalida I. Noel ◽  
Mustafa M. Ibraheem ◽  
Basim S. Ahmed ◽  
Ahmed F. Hameed ◽  
Nibras H. Khamees ◽  
...  

Benign and malignant prostatic diseases are generally well-known in the world. Accordingly, this research is planned to assess the immunohistochemical analysis of CD133 and CD166 in the prostatic epithelium in samples of benign prostatic hyperplasia (BPH) and normal looking epithelium around prostatic adenocarcinoma samples (PCa) and to explore the opportunity of malignant alterations in benign tissue. The prostate samples were divided into 2 groups; 50 BPH samples, and 50 normally looking tissue surrounding prostatic carcinoma samples (NPCA). The samples were treated for immunohistochemical examination of CD133 and CD166. Over expression of CD133 appeared in the BPH group which was statistically significant as compared to NPCA group. Conversely, over expression of CD166 stem cell marker in NPCA group than BPH group as it was significant statistically. CD166 is a stem cell marker for tissue tumorigenicity, while the positive expression of CD133 is not of value for cancer initiation.


Sign in / Sign up

Export Citation Format

Share Document