scholarly journals The emerging role of C/EBPs in glucocorticoid signaling: lessons from the lung

2011 ◽  
Vol 212 (3) ◽  
pp. 291-305 ◽  
Author(s):  
Abraham B Roos ◽  
Magnus Nord

Glucocorticoids (GCs) have been successfully used in the treatment of inflammatory diseases for decades. However, there is a relative GC resistance in several inflammatory lung disorders, such as chronic obstructive pulmonary disease (COPD), but still the mechanism(s) behind this unresponsiveness remains unknown. Interaction between transcription factors and the GC receptor contribute to GC effects but may also provide mechanisms explaining steroid resistance. CCAAT/enhancer-binding protein (C/EBP) transcription factors are important regulators of pulmonary gene expression and have been implicated in inflammatory lung diseases such as asthma, pulmonary fibrosis, cystic fibrosis, sarcoidosis, and COPD. In addition, several studies have indicated a role for C/EBPs in mediating GC effects. In this review, we discuss the different mechanisms of GC action as well as the function of the lung-enriched members of the C/EBP transcription factor family. We also summarize the current knowledge of the role of C/EBP transcription factors in mediating the effects of GCs, with emphasis on pulmonary effects, and their potential role in mediating GC resistance.

Cells ◽  
2019 ◽  
Vol 8 (2) ◽  
pp. 123 ◽  
Author(s):  
Kui Wang ◽  
Yi Chen ◽  
Pengju Zhang ◽  
Ping Lin ◽  
Na Xie ◽  
...  

Autophagy is a highly conserved catabolic process involving autolysosomal degradation of cellular components, including protein aggregates, damaged organelles (such as mitochondria, endoplasmic reticulum, and others), as well as various pathogens. Thus, the autophagy pathway represents a major adaptive response for the maintenance of cellular and tissue homeostasis in response to numerous cellular stressors. A growing body of evidence suggests that autophagy is closely associated with diverse human diseases. Specifically, acute lung injury (ALI) and inflammatory responses caused by bacterial infection or xenobiotic inhalation (e.g., chlorine and cigarette smoke) have been reported to involve a spectrum of alterations in autophagy phenotypes. The role of autophagy in pulmonary infection and inflammatory diseases could be protective or harmful dependent on the conditions. In this review, we describe recent advances regarding the protective features of autophagy in pulmonary diseases, with a focus on ALI, idiopathic pulmonary fibrosis (IPF), chronic obstructive pulmonary disease (COPD), tuberculosis, pulmonary arterial hypertension (PAH) and cystic fibrosis.


2014 ◽  
Vol 15 (4) ◽  
pp. 223-229
Author(s):  
Bojana Simovic Markovic ◽  
Ljubica Vucicevic ◽  
Sanja Bojic ◽  
Vladislav Volarevic

ABSTRACT Autophagy is a catabolic mechanism in the cell that involves the degradation of unnecessary or dysfunctional cellular components by the lysosomal machinery. Recent studies have indicated that autophagy is a source of autoantigens, thus highlighting its potential role in the pathogenesis of autoimmunity. There are at least three different forms of autophagy: macroautophagy, microautophagy and chaperone-mediated autophagy (CMA). The physiological role of autophagy is to maintain cellular homeostasis by removing long-lived, damaged proteins and dysfunctional organelles and by providing energy. Aberrant autophagy may contribute to chronic inflammatory diseases and autoimmune diseases. An understanding of the complex relationships between autophagy and autophagy-related genes in each autoimmune disease creates the possibility of developing more specific and effective therapeutic strategies. Given the importance of autophagy in immune functions, this review article summarises current knowledge about the role of autophagy in the pathogenesis of autoimmune diseases.


2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Izabela Szymczak ◽  
Joanna Wieczfinska ◽  
Rafal Pawliczak

Inflammatory airway diseases are a significant health problems requiring new approaches to the existing therapies and addressing fundamental issues. Difficulties in developing effective therapeutic strategies might be caused by lack of understanding of their exact molecular mechanism. MicroRNAs (miRNAs) are a class of regulators that already revolutionized the view of gene expression regulation. A cumulating number of investigations show a pivotal role of miRNAs in the pathogenesis of asthma, chronic obstructive pulmonary disease (COPD), or airway remodeling through the regulation of many pathways involved in their pathogenesis. Expression changes of several miRNAs have also been found to play a role in the development and/or improvement in asthma or COPD. Still, relatively little is known about the role of miRNAs in inflammatory disorders. The microRNA profiles may differ depending on the cell type or antigen-presenting cell. Based on the newest literature, this review discusses the current knowledge concerning miRNA contribution and influence on lung inflammation and chosen inflammatory airway diseases: asthma and COPD.


2021 ◽  
Vol 12 ◽  
Author(s):  
Hernán F. Peñaloza ◽  
Rick van der Geest ◽  
Joel A. Ybe ◽  
Theodore J. Standiford ◽  
Janet S. Lee

The IL-36 family of cytokines were identified in the early 2000’s as a new subfamily of the IL-1 cytokine family, and since then, the role of IL-36 cytokines during various inflammatory processes has been characterized. While most of the research has focused on the role of these cytokines in autoimmune skin diseases such as psoriasis and dermatitis, recent studies have also shown the importance of IL-36 cytokines in the lung inflammatory response during infectious and non-infectious diseases. In this review, we discuss the biology of IL-36 cytokines in terms of how they are produced and activated, as well as their effects on myeloid and lymphoid cells during inflammation. We also discuss the role of these cytokines during lung infectious diseases caused by bacteria and influenza virus, as well as other inflammatory conditions in the lungs such as allergic asthma, lung fibrosis, chronic obstructive pulmonary disease, cystic fibrosis and cancer. Finally, we discuss the current therapeutic advances that target the IL-36 pathway and the possibility to extend these tools to treat lung inflammatory diseases.


Lung ◽  
2015 ◽  
Vol 193 (6) ◽  
pp. 911-918 ◽  
Author(s):  
Katsutoshi Ando ◽  
Hiroshi Kuraishi ◽  
Tetsutaro Nagaoka ◽  
Takeo Tsutsumi ◽  
Yoshito Hoshika ◽  
...  

2021 ◽  
Vol 70 (1) ◽  
pp. 25-32
Author(s):  
AGNIESZKA MAGRYŚ

Chronic respiratory diseases account for high morbidity and mortality, with asthma, chronic obstructive pulmonary disease (COPD), and cystic fibrosis (CF) being the most prevalent globally. Even though the diseases increase in prevalence, the exact underlying mechanisms have still not been fully understood. Despite their differences in nature, pathophysiologies, and clinical phenotypes, a growing body of evidence indicates that the presence of lung microbiota can shape the pathogenic processes underlying chronic inflammation, typically observed in the course of the diseases. Therefore, the characterization of the lung microbiota may shed new light on the pathogenesis of these diseases. Specifically, in chronic respiratory tract diseases, the human microbiota may contribute to the disease’s development and severity. The present review explores the role of the microbiota in the area of chronic pulmonary diseases, especially COPD, asthma, and CF.


Sign in / Sign up

Export Citation Format

Share Document