scholarly journals Jab1 is a T2-dependent coactivator or a T3-dependent corepressor of TRB1-mediated gene regulation

2017 ◽  
Vol 232 (3) ◽  
pp. 451-459 ◽  
Author(s):  
Gabriela Hernández-Puga ◽  
Arturo Mendoza ◽  
Alfonso León-del-Río ◽  
Aurea Orozco

Thyroid hormones (THs) induce pleiotropic effects in vertebrates, mainly through the activation or repression of gene expression. These mechanisms involve thyroid hormone binding to thyroid hormone receptors, an event that is followed by the sequential recruitment of coactivator or corepressor proteins, which in turn modify the rate of transcription. In the present study, we looked for specific coregulators recruited by the long isoform of the teleostean thyroid hormone receptor beta 1 (L-Trb1) when bound to the bioactive TH, 3,5-T2 (T2). We found that jun activation domain-binding protein1 (Jab1) interacts with L-Trb1 + T2 complex. Using both the teleostean and human TRB1 isoforms, we characterized the Jab1–TRB1 by yeast two-hybrid, pull-down and transactivation assays. Our results showed that the TRB1–Jab1 interaction was ligand dependent and involved the single Jab1 nuclear receptor box, as well as the ligand-binding and N-terminal domains of TRB1. We also provide evidence of ligand-dependent, dual coregulatory properties of Jab1. Indeed, when T2 is bound to L-Trb1 or hTRB1, Jab1 acts as a coactivator of transcription, whereas it has corepressor activity when interacting with the T3-bound S-Trb1 or hTRB1. These mechanisms could explain some of the pleiotropic actions exerted by THs to regulate diverse biological processes.

2004 ◽  
Vol 167 (5) ◽  
pp. 915-924 ◽  
Author(s):  
Nuttawut Saelim ◽  
Linu M. John ◽  
Jun Wu ◽  
Jeong Soon Park ◽  
Yidong Bai ◽  
...  

Thyroid hormone 3,5,3′-tri-iodothyronine (T3) binds and activates thyroid hormone receptors (TRs). Here, we present evidence for a nontranscriptional regulation of Ca2+ signaling by T3-bound TRs. Treatment of Xenopus thyroid hormone receptor beta subtype A1 (xTRβA1) expressing oocytes with T3 for 10 min increased inositol 1,4,5-trisphosphate (IP3)-mediated Ca2+ wave periodicity. Coexpression of TRβA1 with retinoid X receptor did not enhance regulation. Deletion of the DNA binding domain and the nuclear localization signal of the TRβA1 eliminated transcriptional activity but did not affect the ability to regulate Ca2+ signaling. T3-bound TRβA1 regulation of Ca2+ signaling could be inhibited by ruthenium red treatment, suggesting that mitochondrial Ca2+ uptake was required for the mechanism of action. Both xTRβA1 and the homologous shortened form of rat TRα1 (rTRαΔF1) localized to the mitochondria and increased O2 consumption, whereas the full-length rat TRα1 did neither. Furthermore, only T3-bound xTRβA1 and rTRαΔF1 affected Ca2+ wave activity. We conclude that T3-bound mitochondrial targeted TRs acutely modulate IP3-mediated Ca2+ signaling by increasing mitochondrial metabolism independently of transcriptional activity.


1991 ◽  
Vol 11 (10) ◽  
pp. 5079-5089 ◽  
Author(s):  
D E Banker ◽  
J Bigler ◽  
R N Eisenman

The c-erbA proto-oncogene encodes the thyroid hormone receptor, a ligand-dependent transcription factor which plays an important role in vertebrate growth and development. To define the role of the thyroid hormone receptor in developmental processes, we have begun studying c-erbA gene expression during the ontogeny of Xenopus laevis, an organism in which thyroid hormone has well-documented effects on morphogenesis. Using polymerase chain reactions (PCR) as a sensitive assay of specific gene expression, we found that polyadenylated erbA alpha RNA is present in Xenopus cells at early developmental stages, including the fertilized egg, blastula, gastrula, and neurula. By performing erbA alpha-specific PCR on reverse-transcribed RNAs from high-density sucrose gradient fractions prepared from early-stage embryos, we have demonstrated that these erbA transcripts are recruited to polysomes. Therefore, erbA is expressed in Xenopus development prior to the appearance of the thyroid gland anlage in tailbud-stage embryos. This implies that erbA alpha/thyroid hormone receptors may play ligand-independent roles during the early development of X. laevis. Quantitative PCR revealed a greater than 25-fold range in the steady-state levels of polyadenylated erbA alpha RNA across early stages of development, as expressed relative to equimolar amounts of total embryonic RNA. Substantial increases in the levels of erbA alpha RNA were noted at stages well after the onset of zygotic transcription at the mid-blastula transition, with accumulation of erbA alpha transcripts reaching a relative maximum in advance of metamorphosis. We also show that erbA alpha RNAs are expressed unequally across Xenopus neural tube embryos. This differential expression continues through later stages of development, including metamorphosis. This finding suggests that erbA alpha/thyroid hormone receptors may play roles in tissue-specific processes across all of Xenopus development.


2000 ◽  
Vol 167 (2) ◽  
pp. 219-227 ◽  
Author(s):  
K Nishiyama ◽  
A Matsushita ◽  
H Natsume ◽  
T Mikami ◽  
R Genma ◽  
...  

Human thyroid hormone receptor (TR) is encoded by two distinct genes, TR alpha and TR beta. TR heterodimerizes with retinoid X receptor (RXR) and binds efficiently to the thyroid hormone (T(3)) response element (TRE) of target genes. In the absence of T(3), unliganded TR suppresses the basal promoter activity of positively regulated genes (silencing). Silencing mediator for retinoid and thyroid hormone receptors (SMRT) and nuclear receptor co-repressor (N-CoR) interact with unliganded TR and function as corepressor proteins. Previously, we found beta F451X with carboxyl (C)-terminal 11-amino acid deletion had stronger silencing potency than wild-type TR beta 1 and beta E449X with C-terminal 13-amino acid deletion on a subset of TREs. In the present study, to assess the isoform-specific effects of the C-terminal truncations on TR silencing, we constructed two mutant TR alpha 1s (alpha F397X and alpha E395X) with the same respective C-terminal truncations as beta F451X and beta E449X and analysed their silencing activities. Unlike beta F451X and beta E449X, alpha F397X and alpha E395X showed similarly stronger silencing potency than wild-type TR alpha 1. We further studied the abilities of wild-type and the mutant TR beta 1s and alpha 1s on RXR and co-repressor binding by a two-hybrid interference assay. beta F451X had significantly stronger abilities to bind to RXR and SMRT than did wild-type TR beta 1 and beta E449X. In contrast, wild-type TR alpha 1, alpha F397X and alpha E395X showed similar abilities to bind to RXR and SMRT. beta E449X and alpha E395X, which have identical C-terminal truncation, showed less ability to bind to N-CoR than did wild-type TR beta 1 and beta F451X and wild-type TR alpha 1 and alpha F397X respectively. These results indicate that an identical C-terminal truncation gives rise to different effects on TR beta 1 and alpha1 with respect to silencing potency, RXR binding and SMRT binding. The difference in the silencing potency among wild-type TR beta 1, beta F451X and beta E449X correlated well with the difference in the ability to bind co-repressor SMRT.


2020 ◽  
Vol 244 (1) ◽  
pp. 83-94 ◽  
Author(s):  
Ángela Sánchez ◽  
Constanza Contreras-Jurado ◽  
Diego Rodríguez ◽  
Javier Regadera ◽  
Susana Alemany ◽  
...  

Hypothyroidism is often associated with anemia and immunological disorders. Similar defects are found in patients and in mice with a mutated dominant-negative thyroid hormone receptor α (TRα) and in knockout mice devoid of this receptor, suggesting that this isoform is responsible for the effects of the thyroid hormones in hematopoiesis. However, the hematological phenotype of mice lacking also TRβ has not yet been examined. We show here that TRα1/TRβ-knockout female mice, lacking all known thyroid hormone receptors with capacity to bind thyroid hormones, do not have overt anemia and in contrast with hypothyroid mice do not present reduced Gata1 or Hif1 gene expression. Similar to that found in hypothyroidism or TRα deficiency during the juvenile period, the B-cell population is reduced in the spleen and bone marrow of ageing TRα1/TRβ-knockout mice, suggesting that TRβ does not play a major role in B-cell development. However, splenic hypotrophy is more marked in hypothyroid mice than in TRα1/TRβ-knockout mice and the splenic population of T-lymphocytes is not significantly impaired in these mice in contrast with the reduction found in hypothyroidism. Our results show that the overall hematopoietic phenotype of the TRα1/TRβ-knockout mice is milder than that found in the absence of hormone. Although other mechanism/s cannot be ruled out, our results suggest that the unoccupied TRs could have a negative effect on hematopoiesis, likely secondary to repression of hematopoietic gene expression.


1991 ◽  
Vol 11 (10) ◽  
pp. 5079-5089
Author(s):  
D E Banker ◽  
J Bigler ◽  
R N Eisenman

The c-erbA proto-oncogene encodes the thyroid hormone receptor, a ligand-dependent transcription factor which plays an important role in vertebrate growth and development. To define the role of the thyroid hormone receptor in developmental processes, we have begun studying c-erbA gene expression during the ontogeny of Xenopus laevis, an organism in which thyroid hormone has well-documented effects on morphogenesis. Using polymerase chain reactions (PCR) as a sensitive assay of specific gene expression, we found that polyadenylated erbA alpha RNA is present in Xenopus cells at early developmental stages, including the fertilized egg, blastula, gastrula, and neurula. By performing erbA alpha-specific PCR on reverse-transcribed RNAs from high-density sucrose gradient fractions prepared from early-stage embryos, we have demonstrated that these erbA transcripts are recruited to polysomes. Therefore, erbA is expressed in Xenopus development prior to the appearance of the thyroid gland anlage in tailbud-stage embryos. This implies that erbA alpha/thyroid hormone receptors may play ligand-independent roles during the early development of X. laevis. Quantitative PCR revealed a greater than 25-fold range in the steady-state levels of polyadenylated erbA alpha RNA across early stages of development, as expressed relative to equimolar amounts of total embryonic RNA. Substantial increases in the levels of erbA alpha RNA were noted at stages well after the onset of zygotic transcription at the mid-blastula transition, with accumulation of erbA alpha transcripts reaching a relative maximum in advance of metamorphosis. We also show that erbA alpha RNAs are expressed unequally across Xenopus neural tube embryos. This differential expression continues through later stages of development, including metamorphosis. This finding suggests that erbA alpha/thyroid hormone receptors may play roles in tissue-specific processes across all of Xenopus development.


1996 ◽  
Vol 270 (2) ◽  
pp. H638-H644 ◽  
Author(s):  
D. J. Fisher ◽  
S. Phillips ◽  
T. McQuinn

We investigated the role of thyroid hormone in the physiological perinatal increase in cardiac sarcoplasmic reticulum (SR) Ca(2+)-adenosinetriphosphatase (ATPase) expression. We isolated and cultured the cardiomyocytes in 10(-8) M triiodothyronine (T3) for 48 h and then measured SR Ca(2+)-ATPase mRNA and immunodetectable protein contents as well as SR-dependent 45Ca2+ uptake rate. We also examined the effect of T3 on expression of the same gene in monkey kidney CV-1 cells, which do not express thyroid hormone receptors. T3 increased cardiomyocyte SR Ca2+ pump mRNA content by 289 +/- 35%, and immunodetectable SR Ca2+ pump protein content by 255 +/- 44%, and SR-specific 45Ca2+ uptake rate by 189 +/- 22% (P < 0.01 for each). In contrast, T3 had no significant effect on the total cellular RNA or protein contents in the cardiomyocyte, and there was no effect of T3 on Ca(2+)-ATPase mRNA content in the thyroid hormone receptor-negative CV-1 cells. These data demonstrate that T3 increases expression of the cardiac SR Ca2+ pump, that the effect can be localized to the cardiomyocyte, and that the effect is dependent on thyroid hormone receptors. These data are consistent with pretranslational and possibly transcriptional level effect of thyroid hormone on the cardiac SR Ca2+ pump gene (SERCA 2). The gestation-associated increase in thyroid hormone may be at least partially responsible for the previously demonstrated perinatal increase in cardiac SR Ca2+ pump expression.


1993 ◽  
Vol 13 (12) ◽  
pp. 7540-7552 ◽  
Author(s):  
D E Banker ◽  
R N Eisenman

Thyroid hormone receptor acts as a hormone-dependent transcriptional transactivator and as a transcriptional repressor in the absence of thyroid hormone. Specifically, thyroid hormone receptor can repress retinoic acid-induced gene expression through interactions with retinoic acid receptor. (Retinoic acid is a potent teratogen in the frog Xenopus laevis, acting at early embryonic stages to interfere with the formation of anterior structures. Endogenous retinoic acid is thought to act in normal anterior-posterior axis formation.) We have previously shown that thyroid hormone receptor RNA (alpha isotype) is expressed and polysome-associated during Xenopus embryogenesis preceding thyroid gland maturation and endogenous thyroid hormone production (D. E. Banker, J. Bigler, and R. N. Eisenman, Mol. Cell. Biol. 11:5079-5089, 1991). To determine whether thyroid hormone receptor might influence the effects of retinoic acid in early frog development, we have examined the results of ectopic thyroid hormone receptor expression on retinoic acid teratogenesis. We demonstrate that microinjections of full-length thyroid hormone receptor RNA protect injected embryos from retinoic acid teratogenesis. DNA binding is apparently essential to this protective function, as truncated thyroid hormone receptors, lacking DNA-binding domains but including hormone-binding and dimerization domains, do not protect from retinoic acid. We have shown that microinjections of these dominant-interfering thyroid hormone receptors, as well as anti-thyroid hormone receptor antibodies, increase retinoic acid teratogenesis in injected embryos, presumably by inactivating endogenous thyroid hormone receptor. This finding suggests that endogenous thyroid hormone receptors may act to limit retinoic acid sensitivity. On the other hand, after thyroid hormone treatment, ectopic thyroid hormone receptor mediates teratogenesis that is indistinguishable from the dorsoanterior deficiencies produced in retinoic acid teratogenesis. The previously characterized retinoic acid-responsive gene, Xhox.lab2, can be induced by thyroid hormone in embryos ectopically expressing thyroid hormone receptor and is less responsive to retinoic acid in such embryos. The fact that both thyroid hormone and retinoic acid can affect overlapping gene expression pathways to produce abnormal embryonic axes and can regulate the same early-expressed gene suggests a model in which thyroid hormone receptor blocks retinoic acid receptor-mediated teratogenesis by directly repressing retinoic acid-responsive genes.


Sign in / Sign up

Export Citation Format

Share Document