scholarly journals Successful in vitro culture of pre-antral follicles derived from vitrified murine ovarian tissue: oocyte maturation, fertilization, and live births

Reproduction ◽  
2011 ◽  
Vol 141 (2) ◽  
pp. 183-191 ◽  
Author(s):  
Xiaoqian Wang ◽  
Sally Catt ◽  
Mulyoto Pangestu ◽  
Peter Temple-Smith

Cryopreservation of ovarian tissue is an important option for preserving the fertility of cancer patients undergoing chemotherapy and radiotherapy. In this study, we examined the viability and function of oocytes derivedin vitrofrom pre-antral follicles as an alternative method for restoring fertility. Pre-antral follicles (specified as secondary follicle with a diameter around 100–130 μm) were mechanically isolated from vitrified-warmed and fresh adult mouse ovarian tissues and cultured for 12 days followed by an ovulation induction protocol at the end of this period to initiate oocyte maturation. Oocytes were then released from these follicles, fertilizedin vitro, and cultured to the blastocyst stage and vitrified. After storage in liquid nitrogen for 2 weeks, groups of vitrified blastocysts were warmed and transferred into pseudo-pregnant recipient females. Although most of the isolated mouse pre-antral follicles from fresh (79.4%) and vitrified (75.0%) ovarian tissues survived the 12-dayin vitroculture period, significantly fewer mature oocytes developed from vitrified-warmed pre-antral follicles than from the fresh controls (62.2 vs 86.4%,P<0.05). No difference was observed in embryo cleavage rates between these two groups, but the proportion of embryos that developed into blastocysts in the vitrification group was only half that of the controls (24.2 vs 47.2%,P<0.05). Nevertheless, live births of healthy normal pups were achieved after transfer of vitrified blastocysts derived from both experimental groups. This study shows that successful production of healthy offspring using anin vitrofollicle culture system is feasible, and suggests that this procedure could be used in cancer patients who wish to preserve their fertility using ovarian tissue cryopreservation.

Reproduction ◽  
2009 ◽  
Vol 138 (3) ◽  
pp. 527-535 ◽  
Author(s):  
Xiaoqian Wang ◽  
Sally Catt ◽  
Mulyoto Pangestu ◽  
Peter Temple-Smith

Ovarian tissue cryopreservation and transplantation can be used to preserve fertility for cancer patients. In this study, we assessed the viability and function of ovarian tissue from adult mice that was cryopreserved by solid surface vitrification or traditional slow-cooling using variousin vitroandin vivotechniques, including allotransplantation,in vitrooocyte maturation, embryo culturein vitro, blastocyst cryopreservation, embryo transfer, and development. The importance of cumulus cells for oocyte maturation, fertilization, and embryo development was investigated. Graft recovery, follicle survival, and oocyte retrieval was similar in control, vitrified, and slow-cooled groups. High rates of oocyte maturation, cleavage, and blastocyst formation were achieved, with no significant differences between the control, vitrified or slow-cooled ovarian tissue grafts. The presence of cumulus cells was important for oocyte maturation, fertilization, and subsequent development. Cumulus–oocyte complexes with no surrounding cumulus cells (N-COCs) or with an incomplete layer (P-COCs) had significantly lower rates of oocyte maturation and blastocyst formation than cumulus–oocyte complexes with at least one complete layer of cumulus cells (F-COCs; maturation rate: 63, 78 vs 94%; blastocyst rate: 29, 49 vs 80%). Live births were achieved using vitrified blastocysts derived from oocytes taken from vitrified and slow-cooled ovarian tissue heterotypic allografts. Successful production of healthy offspring from these vitrified blastocysts suggests that this technique should be considered as a useful stage to pause in the assisted reproduction pathway. This provides an alternative protocol for restoring fertility and offering cancer patients a better indication of their chances of pregnancy and live birth.


2011 ◽  
Vol 9 (1) ◽  
pp. 150 ◽  
Author(s):  
Giovanna Fasano ◽  
Federica Moffa ◽  
Julie Dechène ◽  
Yvon Englert ◽  
Isabelle Demeestere

2021 ◽  
Vol 36 (Supplement_1) ◽  
Author(s):  
M De Vos

Abstract Abstract text Discussing fertility preservation (FP) in young cancer patients has become a key component of routine oncological health care. Although ovarian stimulation followed by oocyte cryopreservation has been recommended in cases where two to three weeks are available before the start of chemotherapy, ovarian tissue cryopreservation (OTC) is the preferred option when this timeframe is not available and when the potential gonadotoxic impact of cancer therapy is deemed moderate or severe, or in prepubertal girls. During ovarian tissue processing in the laboratory, cumulus-oocyte complexes can be identified. In vitro maturation and further vitrification of oocytes retrieved in ex vivo from the extracted ovarian tissue (ovarian tissue oocytes in vitro maturation; OTO-IVM) can be attempted to enhance the future reproductive options of the patient. Although the number of reported live births after OTO-IVM are limited, this experimental FP procedure has potential to become a standard appended procedure in conjunction with OTC. In cancer patients with haematological tumours and ovarian invasion, or patients with primary tumours of the ovary, ovarian tissue grafting may be contraindicated because of the risk of reintroducing malignant cells. Utilisation of vitrified oocytes after OTO-IVM may be the only hope for genetic offspring for these patients. Moreover, exogenous hormonal pretreatment is not required and COC can be recovered during ovarian tissue processing in the majority of patients who undergo partial or total unilateral oophorectomy. Nevertheless, maturation rates after OTO-IVM vary and are generally lower compared to IVM of transvaginally harvested IVM oocytes; currently available IVM systems registered for clinical use will have to be adapted to accommodate the in vitro requirements of oocytes derived from extracorporeal ovarian tissue, and follow-up data are needed to assess the success rate and safety of this novel approach.


2020 ◽  
Vol 21 (20) ◽  
pp. 7792
Author(s):  
Hyun-Woong Cho ◽  
Sanghoon Lee ◽  
Kyung-Jin Min ◽  
Jin Hwa Hong ◽  
Jae Yun Song ◽  
...  

Due to improvements in chemotherapeutic agents, cancer treatment efficacy and cancer patient survival rates have greatly improved, but unfortunately gonadal damage remains a major complication. Gonadotoxic chemotherapy, including alkylating agents during reproductive age, can lead to iatrogenic premature ovarian insufficiency (POI), and loss of fertility. In recent years, the demand for fertility preservation has increased dramatically among female cancer patients. Currently, embryo and oocyte cryopreservation are the only established options for fertility preservation in women. However, there is growing evidence for other experimental techniques including ovarian tissue cryopreservation, oocyte in vitro maturation, artificial ovaries, stem cell technologies, and ovarian suppression. To prevent fertility loss in women with cancer, individualized fertility preservation options including established and experimental techniques that take into consideration the patient’s age, marital status, chemotherapy regimen, and the possibility of treatment delay should be provided. In addition, effective multidisciplinary oncofertility strategies that involve a highly skilled and experienced oncofertility team consisting of medical oncologists, gynecologists, reproductive biologists, surgical oncologists, patient care coordinators, and research scientists are necessary to provide cancer patients with high-quality care.


Animals ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 1065 ◽  
Author(s):  
Janice M. V. Vilela ◽  
Ellen C. R. Leonel ◽  
Liudimila P. Gonçalves ◽  
Raísa E. G. Paiva ◽  
Rodrigo S. Amaral ◽  
...  

The aim of this study was to assess a slow-freezing protocol of cat ovarian tissue cryopreservation using autotransplantation. Four adult queens were ovariohysterectomized and the ovaries were fragmented and cryopreserved. After one week, the grafts were thawed and autografted to the subcutaneous tissue of the dorsal neck of each queen, then randomly removed after 7, 14, 28, 49, and 63 days after transplantation. Percentages of morphologically normal primordial and growing follicles (MNFs) were 88% and 97%, respectively, in fresh tissue samples (fresh controls), and 74% and 100%, respectively, immediately after thawing (cryo D0). No MNFs were found after 49 days of transplantation. In both fresh control and cryo D0 fragments, granulosa cells were frequently in proliferation. Two morphologically normal antral follicles were detected in one queen on Day 28 post-transplantation. Connective tissue fibers increased, suggesting replacement of active ovarian cortex by fibrous tissue. Tissue vascularization was observed at 7 days after grafting, and wide blood vessels were clearly visible on Days 49 and 63. In conclusion, although follicular survival was low after cryopreservation and grafting of cat ovarian tissue, follicles were able to develop up to the antral stage, which is an encouraging outcome.


2019 ◽  
Vol 104 (12) ◽  
pp. 6182-6192 ◽  
Author(s):  
Lisa Ann Owens ◽  
Stine Gry Kristensen ◽  
Avi Lerner ◽  
Georgios Christopoulos ◽  
Stuart Lavery ◽  
...  

Abstract Context Polycystic ovary syndrome (PCOS) is the most common cause of anovulation. A key feature of PCOS is arrest of follicles at the small- to medium-sized antral stage. Objective and Design To provide further insight into the mechanism of follicle arrest in PCOS, we profiled (i) gonadotropin receptors; (ii) characteristics of aberrant steroidogenesis; and (iii) expression of anti-Müllerian hormone (AMH) and its receptor in granulosa cells (GCs) from unstimulated, human small antral follicles (hSAFs) and from granulosa lutein cells (GLCs). Setting GCs from hSAFs were collected at the time of cryopreservation of ovarian tissue for fertility preservation and GLCs collected during oocyte aspiration before in vitro fertilization/intracytoplasmic sperm injection. Participants We collected hSAF GCs from 31 women (98 follicles): 10 with polycystic ovaries (PCO) and 21 without. GLCs were collected from 6 women with PCOS and 6 controls undergoing IVF. Main Outcome Measures Expression of the following genes: LHCGR, FSHR, AR, INSR, HSD3B2, CYP11A1, CYP19, STAR, AMH, AMHR2, FST, INHBA, INHBB in GCs and GLCs were compared between women with PCO and controls. Results GCs in hSAFs from women with PCO showed higher expression of LHCGR in a subset (20%) of follicles. Expression of FSHR (P < 0.05), AR (P < 0.05), and CYP11A1 (P < 0.05) was lower, and expression of CYP19A1 (P < 0.05), STAR (P < 0.05), HSD3B2 (P = NS), and INHBA (P < 0.05) was higher in PCO GCs. Gene expression in GL cells differed between women with and without PCOS but also differed from that in GCs. Conclusions Follicle arrest in PCO is characterized in GCs by differential regulation of key genes involved in follicle growth and function.


2016 ◽  
Vol 32 (11) ◽  
pp. 881-885 ◽  
Author(s):  
Roberto Paradisi ◽  
Maria Macciocca ◽  
Rossella Vicenti ◽  
Stefania Rossi ◽  
Antonio M. Morselli-Labate ◽  
...  

Zygote ◽  
2016 ◽  
Vol 24 (5) ◽  
pp. 635-653 ◽  
Author(s):  
M.A. Filatov ◽  
Y.V. Khramova ◽  
M.V. Kiseleva ◽  
I.V. Malinova ◽  
E.V. Komarova ◽  
...  

SummaryIn the present review, the main strategies of female fertility preservation are covered. Procedures of fertility preservation are necessary for women who suffer from diseases whose treatment requires the use of aggressive therapies, such as chemotherapy and radiotherapy. These kinds of therapy negatively influence the health of gametes and their progenitors. The most commonly used method of female fertility preservation is ovarian tissue cryopreservation, followed by the retransplantation of thawed tissue. Another approach to female fertility preservation that has been actively developed lately is the ovarian tissuein vitroculture. The principal methods, advantages and drawbacks of these two strategies are discussed in this article.


2015 ◽  
Vol 308 (6) ◽  
pp. E525-E534 ◽  
Author(s):  
Bo Pan ◽  
Derek Toms ◽  
Wei Shen ◽  
Julang Li

We sought to investigate whether miR-378 plays a role in cumulus cells and whether the manipulation of miRNA levels in cumulus cells influences oocyte maturation in vitro. Cumulus-oocyte complexes (COCs) from ovarian follicles had significantly lower levels of precursor and mature miR-378 in cumulus cells surrounding metaphase II (MII) oocytes than cumulus cells surrounding germinal vesicle (GV) oocytes, suggesting a possible role of miR-378 during COC maturation. Overexpression of miR-378 in cumulus cells impaired expansion and decreased expression of genes associated with expansion ( HAS2, PTGS2) and oocyte maturation ( CX43, ADAMTS1, PGR). Cumulus cell expression of miR-378 also suppressed oocyte progression from the GV to MII stage (from 54 ± 2.7 to 31 ± 5.1%), accompanied by a decrease of growth differentiation factor 9 ( GDF9), bone morphogenetic protein 15 ( BMP15), zona pellucida 3 ( ZP3), and CX37 in the oocytes. Subsequent in vitro fertilization resulted in fewer oocytes from COCs overexpressing miR-378 reaching the blastocyst stage (7.3 ± 0.7 vs. 16.6 ± 0.5%). miR-378 knockdown led to increased cumulus expansion and oocyte progression to MII, confirming a specific effect of miR-378 in suppressing COC maturation. Aromatase (CYP19A1) expression in cumulus cells was also inhibited by miR-378, leading to a significant decrease in estradiol production. The addition of estradiol to IVM culture medium reversed the effect of miR-378 on cumulus expansion and oocyte meiotic progression, suggesting that decreased estradiol production via suppression of aromatase may be one of the mechanisms by which miR-378 regulates the maturation of COCs. Our data suggest that miR-378 alters gene expression and function in cumulus cells and influences oocyte maturation, possibly via oocyte-cumulus interaction and paracrine regulation.


Sign in / Sign up

Export Citation Format

Share Document