scholarly journals Mesenchymal stem cells from amnion and amniotic fluid in the bovine

Reproduction ◽  
2013 ◽  
Vol 145 (4) ◽  
pp. 391-400 ◽  
Author(s):  
B Corradetti ◽  
A Meucci ◽  
D Bizzaro ◽  
F Cremonesi ◽  
A Lange Consiglio

Amnion and amniotic fluid (AF) are noncontroversial and inexhaustible sources of mesenchymal stem cells (MSCs) that can be harvested noninvasively at low cost. As in humans, also in veterinary field, presumptive stem cells derived from these tissues reveal as promising candidates for disease treatment, specifically for their plasticity, their reduced immunogenicity, and high anti-inflammatory potential. The aim of this work is to obtain and characterize, for the first time in bovine species, presumptive MSCs from the epithelial portion of the amnion (AECs) and from the AF (AF-MSCs) to be used for clinical applications. AECs display a polygonal morphology, whereas AF-MSCs exhibit a fibroblastic-like morphology only starting from the second passage, being heterogeneous during the primary culture. For both lines, the proliferative ability has been found constant over the ten passages studied and AECs show a statistically lower (P<0.05) doubling time with respect to AF-MSCs. AECs express MSC-specific markers (ITGB1(CD29),CD44,ALCAM(CD166),ENG(CD105), andNT5E(CD73)) from P1 to P3; in AF-MSCs, onlyITGB1,CD44, andALCAMmRNAs are detected;NT5Eis expressed from P2 andENGhas not been found at any passage. AF-MSCs and AECs are positive for the pluripotent markers (POU5F1(OCT4) andMYC(c-Myc)) and lack of the hematopoietic markers. When appropriately induced, both cell lines are capable of differentiating into ectodermal and mesodermal lineages. This study contributes to reinforce the emerging importance of these cells as ideal tools in veterinary medicine. A deeper evaluation of the immunological properties needs to be performed in order to better understand their role in cellular therapy.

Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 4103-4103
Author(s):  
Camillo Almici ◽  
Rosanna Verardi ◽  
Simona Braga ◽  
Arabella Neva ◽  
Domenico Russo ◽  
...  

Abstract Mesenchymal stem cells (MSC) are multipotent cells that are considered one of the most promising product for cellular therapy in regenerative medicine. MSC have been obtained and expanded from bone marrow and umbilical cord blood in adequate amounts for clinical applications. Under the right conditions, MSC could migrate from bone marrow into the peripheral circulation; however MSC have not been routinely isolated from peripheral blood, and studies are rare and not conclusive. The aim of the present study was to evaluate mobilised peripheral blood (MPB), obtained from patients undergoing apheresis collection of circulating hematopoietic progenitor cells, as a potential source of MSC for clinical applications. MPB samples (500–900 × 106 cells, N = 17) were separated by negative lineage-depletion immunoselection (RosetteSep). Selected cells were seeded in multi-well plates at low density in MesenCult Basal Medium without and with different combinations of growth factors (EGF, PDGF-BB, b-FGF). On reaching confluence, adherent cells were detached by 0.25% trypsin-EDTA treatment and replated for at least two passages. At each passage, surface antigen expression was analyzed by flowcytometry (CD45, CD34, CD105, CD44, CD73, CD166, CD31, HLA-DR and VE-caderine). Following immunoselection 9.5–17.1 × 106 cells were recovered from MPB samples. Cultured cells reached confluency in 3–4 weeks on first passage and in two weeks thereafter. Immunophenotyping showed negativity for CD45 antigen. The absence of growth factors in culture medium conditioned MSC growth capability, while the addition of PDGF-BB+EGF or b-FGF was able to boost the number of CD45−/CD73+/CD90+ cells in culture (see figure). However expansion remains still sub-optimal, having been reached in 8/17 samples. In conclusion, we demonstrate that MSC can be obtained from MPB, but expansion requires longer time period and appears more difficult compared to bone marrow. Therefore, further studies need to be conducted to find better culture conditions and optimal growth factor combinations to support MPB-derived MSC expansion. Figure Figure


Author(s):  
Seyed Mehdi Hoseini ◽  
Maryam Moghaddam-Matin ◽  
Ahmad Reza Bahrami ◽  
Fateme Montazeri ◽  
Seyed Mehdi Kalantar

Introduction: Amniotic fluid contains a mixture of different cell types sloughed from the fetal skin, respiratory, alimentary and urogenital tracts, as well as the amnion membrane. As amniotic fluid develops prior to the process of gastrulation, many cells found in its heterogeneous population do not undergo lineage specialization. Therefore, amniotic fluid-derived mesenchymal stem cells (AF-MSCs) may correspond to a new class of stem cells with properties of intermediate plasticity between pluripotent and adult stem cell types. Compared to mesenchymal stem cells (MSCs) from other sources, such as bone marrow, AF-MSCs have better properties for clinical applications, such as differentiation into the cells of three germ layers, high clonal capacity, ability to form embryoid bodies, expression of pluripotent markers, high self-renewal capacity (over 250 population doublings) with normal karyotype at late passages, long telomere length due to continued telomerase activity, specially non-tumorigenicity, low immunogenicity, anti-inflammatory and immunomodulatory properties. Conclusion: Such features have nominated AF-MSC for a range of clinical applications, including in regenerative medicine. In several studies, these cells have been used to regenerate nerve, lung, and heart tissues. Overall, AF-MSCs are expected to be an ideal source of stem cells for future regenerative medicine and tissue engineering.


Neurosurgery ◽  
2017 ◽  
Vol 64 (CN_suppl_1) ◽  
pp. 292-292
Author(s):  
Rawan Al-kharboosh ◽  
Nicholas Ellens ◽  
Katarina Cheng ◽  
Maarten Rotman ◽  
Jordan Green ◽  
...  

Abstract INTRODUCTION Pre clinical interventions to the CNS require direct cranial administration of drugs for relevant therapeutic concentrations since the efficacy of systemic administration is hindered by the blood-brain barrier (BBB). We used MR-guided Focused Ultrasound (MRgFUS) to deliver primary-patient derived mesenchymal stem cells (hMSCs) for the first time, with sub-millimeter precision, in preselected areas. This method is a revolutionary way to deliver cellular therapy to delicate or inoperable regions obviating the need for invasive surgical intervention. METHODS MRgFUS mediates BBB opening when low intensity FUS is applied to brain vasculature containing circulating microbubbles. This causes high intensity oscillation leading to a pore formation in BBB. hMSCs were injected intracardially in mice as a proof-of-principal delivery system. Under guidance of MRI, 0.4-1MPa in situ pressures at 1 MHz, 1ms bursts and 1Hz pulse repetition frequency for 120 seconds were administered on the left hemisphere. Each animals contralateral brain served as its own control. RESULTS >We demonstrate that MRgFUS augments permeability of BBB. Each animal (n = 3) received 3 cavitation parameters ranging from .4-1MPa in situ pressures at time points 2, 6 and 24 hrs. Immunohistochemistry identified hMSC localization on sonicated points. Further analysis showed blood cell extravasation and capillary damage due to the indices being sonicated so close together causing a larger sheer force from the fluid stream of injected microbubbles. The consequence is a cavitation pore larger than intended, necessitating further optimization. There were no observed behavioral complications after sonication and no hMSCs localization in non-pulsed regions demonstrating precise localization and no off-target delivery. CONCLUSION The global hurdle of systemic therapy due to the BBB makes access of therapeutics, let alone cellular therapy to the brain parenchyma, nearly impossible. This study investigates for the first time the utility of FUS to non-destructively permeabilize the BBB by creating a transient pore big enough for hMSC access.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 4260-4260
Author(s):  
Maria G. Roubelakis ◽  
Kalliopi I. Pappa ◽  
Vassiliki Bitsika ◽  
Dimitra Zagoura ◽  
Antonia Vlahou ◽  
...  

Abstract Human mesenchymal stem cells (hMSCs) constitute a population of multipotent cells, easily expanded in culture and able to give rise to many lineages. These characteristics make MSCs a very attractive tool for developing new strategies for clinical applications based on cell therapy. So far, the most common source of MSCs has been the bone marrow (BM). However, identification and characterization of alternative sources of MSCs is of great importance. One such alternative source is the amniotic fluid (AF), which can be collected during scheduled amniocentesis without any ethical concerns. To this end, in the present study, we introduced an improved protocol for isolating and clonally expanding fetal MSCs from second trimester amniotic fluid (AF) and we further characterized these cells based on their phenotype, pluripotency, differentiation potential and proteomic profile. The AF samples were obtained during routine amniocentesis and AF-MSCs were enriched by a modified culture protocol. The isolated MSCs expanded rapidly and exhibited differentiation potential into adipocytes and osteoblasts. More importantly, we showed that these cells can differentiate in vitro not only into cell types derived from mesoderm (adipocytes and osteoblasts) and ectoderm (neural cells) but also more interestingly into endoderm (hepatocytes) derived cells. Moreover, we documented that AF-MSCs express Oct-4 transcription factor, a marker of pluripotency, and we studied for the first time its expression over different passages by real time PCR and documented that it remained constant for at least 17 doublings. An extensive characterization of the phenotypic features of AF-MSCs by using a wide range of surface markers and flow cytometry, indicated that they are positive for all the mesenchymal stem cell markers such as CD90, CD105, CD73 and CD166 and generally exhibit a similar expression pattern to the BM-MSCs. To characterize these cells in more detail, we established the first proteomic database for human AF-MSCs. Using 2D-gel electrophoresis and matrix-assisted laser desorption ionisation-time of flight-mass (MALDI-TOF) spectrometry approach, we have generated for the first time the protein map of AF MSCs, by identifying 260 proteins and directly compared this protein profile with that of MSCs derived from BM. We further performed a similar analysis for BM-MSCs, identifying 170 different proteins and generating a reference map for these cells. The comparison of the proteomic pattern from both sources was similar. In general, 140 proteins were identified in AF-MSCs related to cell growth/maintenance, metabolism/energy pathways, protein metabolism, apoptosis, signal transduction and communication as well as transcription and transport, that are not present in BM-MSCs. The approach we initiated, is expected to facilitate systematic functional studies for these multipotent cells. One such approach could be the implementation of the proteomic analysis, during differentiation of AF-MSCs to cells derived from all three germ layers as shown in our study. Data derived from these approaches are expected to clarify the therapeutic potential of the MSCs.


2019 ◽  
Vol 14 (4) ◽  
pp. 327-336 ◽  
Author(s):  
Carl R. Harrell ◽  
Marina Gazdic ◽  
Crissy Fellabaum ◽  
Nemanja Jovicic ◽  
Valentin Djonov ◽  
...  

Background: Amniotic Fluid Derived Mesenchymal Stem Cells (AF-MSCs) are adult, fibroblast- like, self-renewable, multipotent stem cells. During the last decade, the therapeutic potential of AF-MSCs, based on their huge differentiation capacity and immunomodulatory characteristics, has been extensively explored in animal models of degenerative and inflammatory diseases. Objective: In order to describe molecular mechanisms responsible for the therapeutic effects of AFMSCs, we summarized current knowledge about phenotype, differentiation potential and immunosuppressive properties of AF-MSCs. Methods: An extensive literature review was carried out in March 2018 across several databases (MEDLINE, EMBASE, Google Scholar), from 1990 to present. Keywords used in the selection were: “amniotic fluid derived mesenchymal stem cells”, “cell-therapy”, “degenerative diseases”, “inflammatory diseases”, “regeneration”, “immunosuppression”. Studies that emphasized molecular and cellular mechanisms responsible for AF-MSC-based therapy were analyzed in this review. Results: AF-MSCs have huge differentiation and immunosuppressive potential. AF-MSCs are capable of generating cells of mesodermal origin (chondrocytes, osteocytes and adipocytes), neural cells, hepatocytes, alveolar epithelial cells, insulin-producing cells, cardiomyocytes and germ cells. AF-MSCs, in juxtacrine or paracrine manner, regulate proliferation, activation and effector function of immune cells. Due to their huge differentiation capacity and immunosuppressive characteristic, transplantation of AFMSCs showed beneficent effects in animal models of degenerative and inflammatory diseases of nervous, respiratory, urogenital, cardiovascular and gastrointestinal system. Conclusion: Considering the fact that amniotic fluid is obtained through routine prenatal diagnosis, with minimal invasive procedure and without ethical concerns, AF-MSCs represents a valuable source for cell-based therapy of organ-specific or systemic degenerative and inflammatory diseases.


2019 ◽  
Vol 27 ◽  
pp. S433-S434
Author(s):  
I.I. Damas ◽  
C.C. Zuliani ◽  
Â.M. Moraes ◽  
C.B. Westin ◽  
K.C. Andrade ◽  
...  

2011 ◽  
Vol 204 (1) ◽  
pp. S169-S170
Author(s):  
Leonardo Gucciardo ◽  
Rik Lories ◽  
Silvia Rusconi ◽  
Philip DeKoninck ◽  
Lieve Coorevits ◽  
...  

2015 ◽  
Vol 2015 ◽  
pp. 1-15 ◽  
Author(s):  
Jurate Savickiene ◽  
Grazina Treigyte ◽  
Sandra Baronaite ◽  
Giedre Valiuliene ◽  
Algirdas Kaupinis ◽  
...  

Human amniotic fluid stem cells have become an attractive stem cell source for potential applications in regenerative medicine and tissue engineering. The aim of this study was to characterize amniotic fluid-derived mesenchymal stem cells (AF-MSCs) from second- and third-trimester of gestation. Using two-stage protocol, MSCs were successfully cultured and exhibited typical stem cell morphological, specific cell surface, and pluripotency markers characteristics. AF-MSCs differentiated into adipocytes, osteocytes, chondrocytes, myocytes, and neuronal cells, as determined by morphological changes, cell staining, and RT-qPCR showing the tissue-specific gene presence for differentiated cell lineages. Using SYNAPT G2 High Definition Mass Spectrometry technique approach, we performed for the first time the comparative proteomic analysis between undifferentiated AF-MSCs from late trimester of gestation and differentiated into myogenic, adipogenic, osteogenic, and neurogenic lineages. The analysis of the functional and expression patterns of 250 high abundance proteins selected from more than 1400 demonstrated the similar proteome of cultured and differentiated AF-MSCs but the unique changes in their expression profile during cell differentiation that may help the identification of key markers in differentiated cells. Our results provide evidence that human amniotic fluid of second- and third-trimester contains stem cells with multilineage potential and may be attractive source for clinical applications.


Sign in / Sign up

Export Citation Format

Share Document