scholarly journals Human Amniotic Fluid Stem Cells: General Characteristics and Potential Therapeutic Applications

Author(s):  
Seyed Mehdi Hoseini ◽  
Maryam Moghaddam-Matin ◽  
Ahmad Reza Bahrami ◽  
Fateme Montazeri ◽  
Seyed Mehdi Kalantar

Introduction: Amniotic fluid contains a mixture of different cell types sloughed from the fetal skin, respiratory, alimentary and urogenital tracts, as well as the amnion membrane. As amniotic fluid develops prior to the process of gastrulation, many cells found in its heterogeneous population do not undergo lineage specialization. Therefore, amniotic fluid-derived mesenchymal stem cells (AF-MSCs) may correspond to a new class of stem cells with properties of intermediate plasticity between pluripotent and adult stem cell types. Compared to mesenchymal stem cells (MSCs) from other sources, such as bone marrow, AF-MSCs have better properties for clinical applications, such as differentiation into the cells of three germ layers, high clonal capacity, ability to form embryoid bodies, expression of pluripotent markers, high self-renewal capacity (over 250 population doublings) with normal karyotype at late passages, long telomere length due to continued telomerase activity, specially non-tumorigenicity, low immunogenicity, anti-inflammatory and immunomodulatory properties. Conclusion: Such features have nominated AF-MSC for a range of clinical applications, including in regenerative medicine. In several studies, these cells have been used to regenerate nerve, lung, and heart tissues. Overall, AF-MSCs are expected to be an ideal source of stem cells for future regenerative medicine and tissue engineering.

2011 ◽  
Vol 23 (1) ◽  
pp. 252 ◽  
Author(s):  
L. Valentini ◽  
M. Filioli Uranio ◽  
A. Lange Consiglio ◽  
A. C. Guaricci ◽  
M. Caira ◽  
...  

Mesenchymal stem cells (MSC) are defined as multipotent stem cells that can differentiate into various cell types in vivo and in vitro under controlled conditions. These cells express specific markers detectable by analysis at the mRNA or protein level. Important sources of MSC could be fetal adnexa, such as amniotic fluid (AF), amnion (AM), and umbilical cord matrix (UCM). Canine MSC should be of use for cell-based therapies and tissue engineering improving treatment of several diseases. Moreover, the dog has been considered an attractive animal model to study human diseases. In the present study, we successfully isolated and molecularly characterised AF-MSC, AM-MSC, and UCM-MSC from dogs. Chromosomal stability and telomerase activity were also investigated. Samples were recovered after elective ovariohysterectomy in 3 bitches 25 to 40 days of gestational age. After isolation, cells were maintained in culture (Bossolasco et al. 2006 Cell Res. 16, 329–336) for different passages to perform growth and doubling time (DT) studies. Expression analyses of embryonic (Oct-4, Nanog), mesenchymal (CD44, CD184, CD29), and haematopoietic (CD34, CD45) markers were carried out by RT-PCR. Karyotype analysis was performed by Q banding. Telomerase activity was analysed by TRAPeze Telomerase Detection Kit. In all 3 cell types, the morphology of proliferating cells appeared typically fibroblast-like. In the growth study, cells isolated from AF and AM were cultured until P3, and cells isolated from UCM were maintained until P7. The population DT in AF-MSC was significantly increased (Student’s t-test: P < 0.05) when comparing P1 v. P4. In AM-MSC, DT increased significantly in P1 v. P2 (P < 0.001), and in UCM-MSC, DT significantly increased in P1 v. P4 (P < 0.001). In AF-MSC, cell viability did not change with passages. In AM-MSC, cell viability significantly decreased (P < 0.001) between P1 and P4. In UCM-MSC, cell viability remained at approximately constant levels up to P6 and significantly decreased at P7 (P < 0.001). Amnion and UCM-MSC expressed Oct-4 and CD44, CD184, and CD29, whereas AF-MSC expressed only Oct-4 and CD44. Nanog, CD34, and CD45 were never found to be expressed in any cell line at any passage. In all cell lines, analysed metaphases at P4 showed normal chromosomal number and structure. Telomerase activity was observed in UCM-MSC, whereas tests on AF and AM-MSC are still on going. We first reported data on isolation, in vitro culture, and characterisation of MSC from AM and UCM in the dog. Cells expressed embryonic and MSC markers beginning at P1 and showed normal karyotype. These data indicated that canine MSC from fetal adnexa could be used to study stem cell biology and their application in therapeutic programs. Financial support was provided by Fondi di Ateneo 2009. University of Bari Aldo Moro (COD. ORBA09UDWX) (Resp. Sci. Maria Elena Dell’Aquila).


Molecules ◽  
2022 ◽  
Vol 27 (2) ◽  
pp. 379
Author(s):  
Rabia Ikram ◽  
Shamsul Azlin Ahmad Shamsuddin ◽  
Badrul Mohamed Jan ◽  
Muhammad Abdul Qadir ◽  
George Kenanakis ◽  
...  

Thanks to stem cells’ capability to differentiate into multiple cell types, damaged human tissues and organs can be rapidly well-repaired. Therefore, their applicability in the emerging field of regenerative medicine can be further expanded, serving as a promising multifunctional tool for tissue engineering, treatments for various diseases, and other biomedical applications as well. However, the differentiation and survival of the stem cells into specific lineages is crucial to be exclusively controlled. In this frame, growth factors and chemical agents are utilized to stimulate and adjust proliferation and differentiation of the stem cells, although challenges related with degradation, side effects, and high cost should be overcome. Owing to their unique physicochemical and biological properties, graphene-based nanomaterials have been widely used as scaffolds to manipulate stem cell growth and differentiation potential. Herein, we provide the most recent research progress in mesenchymal stem cells (MSCs) growth, differentiation and function utilizing graphene derivatives as extracellular scaffolds. The interaction of graphene derivatives in human and rat MSCs has been also evaluated. Graphene-based nanomaterials are biocompatible, exhibiting a great potential applicability in stem-cell-mediated regenerative medicine as they may promote the behaviour control of the stem cells. Finally, the challenges, prospects and future trends in the field are discussed.


2018 ◽  
Vol 18 (3) ◽  
pp. 264 ◽  
Author(s):  
Roberto Berebichez-Fridman ◽  
Pablo R. Montero-Olvera

First discovered by Friedenstein in 1976, mesenchymal stem cells (MSCs) are adult stem cells found throughout the body that share a fixed set of characteristics. Discovered initially in the bone marrow, this cell source is considered the gold standard for clinical research, although various other sources—including adipose tissue, dental pulp, mobilised peripheral blood and birth-derived tissues—have since been identified. Although similar, MSCs derived from different sources possess distinct characteristics, advantages and disadvantages, including their differentiation potential and proliferation capacity, which influence their applicability. Hence, they may be used for specific clinical applications in the fields of regenerative medicine and tissue engineering. This review article summarises current knowledge regarding the various sources, characteristics and therapeutic applications of MSCs.Keywords: Mesenchymal Stem Cells; Adult Stem Cells; Regenerative Medicine; Cell Differentiation; Tissue Engineering.


2012 ◽  
Vol 2012 ◽  
pp. 1-9 ◽  
Author(s):  
Hakan Orbay ◽  
Morikuni Tobita ◽  
Hiroshi Mizuno

Mesenchymal stem cells (MSCs) are adult stem cells that were initially isolated from bone marrow. However, subsequent research has shown that other adult tissues also contain MSCs. MSCs originate from mesenchyme, which is embryonic tissue derived from the mesoderm. These cells actively proliferate, giving rise to new cells in some tissues, but remain quiescent in others. MSCs are capable of differentiating into multiple cell types including adipocytes, chondrocytes, osteocytes, and cardiomyocytes. Isolation and induction of these cells could provide a new therapeutic tool for replacing damaged or lost adult tissues. However, the biological properties and use of stem cells in a clinical setting must be well established before significant clinical benefits are obtained. This paper summarizes data on the biological properties of MSCs and discusses current and potential clinical applications.


2021 ◽  
Author(s):  
Huina Luo ◽  
Dongsheng Li ◽  
Zhisheng Chen ◽  
Bingyun Wang ◽  
Shengfeng Chen

Abstract BACKGROUND: Mesenchymal stem cells (MSCs) have generated a great amount of interest in recent years as a novel therapeutic application for improving the quality of pet life and helping them free from painful conditions and diseases. It has now become critical to address the challenges related to the safety and efficacy of MSCs expanded in vitro. In this study, we establish a standardized process for manufacture of canine adipose-derived MSCs (AD-MSCs), including tissue sourcing, cell isolation and culture, cryopreservation, thawing and expansion, quality control and testing, and evaluate the safety and efficacy of those cells for clinical applications. RESULTS: After expansion, the viability of AD-MSCs manufactured under our standardized process was above 90 %. Expression of surface markers and differentiation potential was consistent with ISCT standards. Sterility, mycoplasma, and endotoxin tests were consistently negative. AD-MSCs presented normal karyotype, and did not form in vivo tumors. No adverse events were noted in two cases treated with intravenously AD-MSCs. CONCLUSION: Herein we demonstrated the establishment of a feasible bioprocess for manufacturing and banking canine AD-MSCs for veterinary clinical use.


Cells ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 619 ◽  
Author(s):  
Jerran Santos ◽  
Thibaut Hubert ◽  
Bruce K Milthorpe

Regenerative medicine is a rapidly expanding area in research and clinical applications. Therapies involving the use of small molecule chemicals aim to simplify the creation of specific drugs for clinical applications. Adult mesenchymal stem cells have recently shown the capacity to differentiate into several cell types applicable for regenerative medicine (specifically neural cells, using chemicals). Valproic acid was an ideal candidate due to its clinical stability. It has been implicated in the induction of neural differentiation; however, the mechanism and the downstream events were not known. In this study, we showed that using valproic acid on adult mesenchymal stem cells induced neural differentiation within 24 h by upregulating the expression of suppressor of cytokine signaling 5 (SOCS5) and Fibroblast growth factor 21 (FGF21), without increasing the potential death rate of the cells. Through this, the Janus Kinase/Signal Transducer and Activator of Transcription (JAK/STAT) pathway is downregulated, and the mitogen-activated protein kinase (MAPK) cascade is activated. The bioinformatics analyses revealed the expression of several neuro-specific proteins as well as a range of functional and structural proteins involved in the formation and development of the neural cells.


2021 ◽  
Vol 2 ◽  
Author(s):  
Xiao Han ◽  
Zhipeng Fan

Mesenchymal stem cells (MSCs) are a kind of pluripotent stem cell with the potential of self-renewal and multidirectional differentiation. They can be obtained from a variety of tissues and can differentiate into a variety of cell types under different induction conditions, including osteoblasts. Because of this osteogenic property, MSCs have attracted much attention in the treatment of bone metabolism-related diseases. MicroRNAs (miRNAs), as an epigenetic factor, are thought to play an important regulatory role in the process of osteogenic differentiation of MSCs. In recent years, increasingly evidence shows that miRNAs imbalance is involved in the regulation of osteoporosis and fracture. In this review, miRNAs involved in osteogenic differentiation and their mechanisms for regulating the expression of target genes are reviewed. In addition, we also discuss the potential clinical applications and possible directions of this field in the future.


Reproduction ◽  
2013 ◽  
Vol 145 (4) ◽  
pp. 391-400 ◽  
Author(s):  
B Corradetti ◽  
A Meucci ◽  
D Bizzaro ◽  
F Cremonesi ◽  
A Lange Consiglio

Amnion and amniotic fluid (AF) are noncontroversial and inexhaustible sources of mesenchymal stem cells (MSCs) that can be harvested noninvasively at low cost. As in humans, also in veterinary field, presumptive stem cells derived from these tissues reveal as promising candidates for disease treatment, specifically for their plasticity, their reduced immunogenicity, and high anti-inflammatory potential. The aim of this work is to obtain and characterize, for the first time in bovine species, presumptive MSCs from the epithelial portion of the amnion (AECs) and from the AF (AF-MSCs) to be used for clinical applications. AECs display a polygonal morphology, whereas AF-MSCs exhibit a fibroblastic-like morphology only starting from the second passage, being heterogeneous during the primary culture. For both lines, the proliferative ability has been found constant over the ten passages studied and AECs show a statistically lower (P<0.05) doubling time with respect to AF-MSCs. AECs express MSC-specific markers (ITGB1(CD29),CD44,ALCAM(CD166),ENG(CD105), andNT5E(CD73)) from P1 to P3; in AF-MSCs, onlyITGB1,CD44, andALCAMmRNAs are detected;NT5Eis expressed from P2 andENGhas not been found at any passage. AF-MSCs and AECs are positive for the pluripotent markers (POU5F1(OCT4) andMYC(c-Myc)) and lack of the hematopoietic markers. When appropriately induced, both cell lines are capable of differentiating into ectodermal and mesodermal lineages. This study contributes to reinforce the emerging importance of these cells as ideal tools in veterinary medicine. A deeper evaluation of the immunological properties needs to be performed in order to better understand their role in cellular therapy.


2006 ◽  
Vol 27 (2) ◽  
pp. 208-219 ◽  
Author(s):  
Alan Trounson

Human embryonic stem cells (hESCs) are being rapidly produced from chromosomally euploid, aneuploid, and mutant human embryos that are available from in vitro fertilization clinics treating patients for infertility or preimplantation genetic diagnosis. These hESC lines are an important resource for functional genomics, drug screening, and, perhaps eventually, cell and gene therapy. The methods for deriving hESCs are well established and repeatable and are relatively successful with a ratio of 1:10 to 1:2 new hESC lines produced from 4- to 8-d-old morula and blastocysts and from isolated inner cell mass cell clusters of human blastocysts. The hESCs can be formed and maintained on human somatic cells in humanized serum-free culture conditions and for several passages in cell-free culture systems. The hESCs can be transfected with DNA constructs. Their gene expression profiles are being described and immunological characteristics determined. They may be grown indefinitely in vitro while maintaining their original karyotype and epigenetic status, but this needs to be confirmed from time to time in long-term cultures. hESCs spontaneously differentiate in the absence of the appropriate cell feeder layer, when overgrown in culture and when isolated from the ESC colony. All three major embryonic lineages are produced in differentiating flat attachment cultures and unattached embryoid bodies. Cell progenitors of interest can be identified by markers, expression of reporter genes, and characteristic morphology, and the cells thereafter enriched for progenitor types and further culture to more mature cell types. Directed differentiation systems are well developed for ectodermal pathways that result in neural and glial cells and the mesendodermal pathway for cardiac muscle cells and many other cell types including hematopoietic progenitors and endothelial cells. Directed differentiation into endoderm has been more difficult to achieve, perhaps because of the lack of markers of early progenitors in this lineage. There are reports of enriched cultures of keratinocytes, pigmented retinal epithelium, neural crest cells and motor neurons, hepatic progenitors, and cells that have some markers of gut tissue and pancreatic islet-like cells. The prospects for use of hESC derivatives in regenerative medicine are significant, and there is much optimism for their potential contributions to human regenerative medicine.


2021 ◽  
pp. 2140001
Author(s):  
Alden Davis ◽  
Robert E. Guldberg ◽  
Rebekah M. Samsonraj

Bone fractures are one of the most common orthopedic cases, yet strategies to resolve excessive inflammation and non-unions still lack satisfactory treatment methods owing to the complex fracture microenvironment, as well as the interactions between the plethora of cell types involved. Fracture is a highly inflammatory process which involves the recruitment of various immune cells which in turn release various cytokines and growth factors to perpetuate inflammation and eventually healing resolution. Osteoimmunology is an interdisciplinary field investigating the extensive interactions between the immune system and skeletal system. Mesenchymal stem cells (MSCs) are resident in almost every adult tissue and are responsible for initiating reparative cascades in the event of injury. A key aspect of MSCs is their role as trophic mediators, secreting a milieu of signaling as well as immunomodulatory cytokines that play important roles in tissue regeneration. This paracrine signaling polarizes macrophages into their anti-inflammatory M2 phenotype, activates osteoblasts, inhibits osteoclasts, as well as suppresses conventional T cell proliferation and promotes regulatory T cell (Treg) proliferation. MSCs have been shown to resolve inflammation whilst also supporting osteogenesis; for these reasons, they are considered promising candidates for cellular therapies to treat musculoskeletal pathologies. Through pretreatment and genetic modifications, MSCs can be predisposed to release specific molecules that can modulate the microenvironment and regulate the activity of the immune system towards enhancing bone repair. By understanding the cross-talk between MSCs and the immune system in bone physiology, more targeted therapies directed towards specific cells and discrete signaling molecules become possible that may allow for expedited healing and improved standard of care in orthopedics. In this review, we discuss the interplay between immune cells and MSCs and the potential ways to harness this cross-talk to improve regenerative medicine strategies.


Sign in / Sign up

Export Citation Format

Share Document