scholarly journals Involvement of Nlrp9a/b/c in mouse preimplantation development

Reproduction ◽  
2020 ◽  
Vol 160 (2) ◽  
pp. 181-191 ◽  
Author(s):  
Satoko Kanzaki ◽  
Shiori Tamura ◽  
Toshiaki Ito ◽  
Mizuki Wakabayashi ◽  
Koji Saito ◽  
...  

Nucleotide-binding oligomerization domain, leucine-rich repeat and pyrin domain-containing proteins (NRLPs) are central components of the inflammasome. Accumulating evidence has shown that a reproductive clade of NRLPs is predominantly expressed in oocyte to cleavage stage embryos and participates in mammalian preimplantation development as a component of a multiprotein complex known as the subcortical maternal complex (SCMC). Nlrp9s belong to the reproductive class of NLRPs; Nlrp9b is unique in acting as an inflammasome against rotavirus in intestines. Here we generated mice carrying mutations in all three members of the Nlrp9a/b/c gene (Nlrp9 triple mutant (TMut) mice). When crossed with WT males, the Nlrp9 TMut females were fertile, but deliveries with fewer pups were increased in the mutants. Consistent with this, blastocyst development was retarded and lethality to the preimplantation embryos increased in the Nlrp9 TMut females in vivo. Under in vitro culture conditions, the fertilized eggs from the Nlrp9 TMut females exhibited developmental arrest at the two-cell stage, accompanied by asymmetric cell division. By contrast, double-mutant (DMut) oocytes (any genetic combination) did not exhibit the two-cell block in vitro, showing the functional redundancy of Nlrp9a/b/c. Finally, Nlrp9 could bind to components of the SCMC. These results show that Nlrp9 functions as an immune or reproductive NLRP in a cell-type-dependent manner.

Reproduction ◽  
2016 ◽  
Vol 152 (5) ◽  
pp. 417-430 ◽  
Author(s):  
Atsushi Fukuda ◽  
Atsushi Mitani ◽  
Toshiyuki Miyashita ◽  
Hisato Kobayashi ◽  
Akihiro Umezawa ◽  
...  

Spatiotemporal expression of transcription factors is crucial for genomic reprogramming. Pou5f1 (Oct4) is an essential transcription factor for reprogramming. A recent study reported that OCT4A, which is crucial for establishment and maintenance of pluripotent cells, is expressed in oocytes, but maternal OCT4A is dispensable for totipotency induction. Whereas another study reported that OCT4B, which is not related to pluripotency, is predominantly expressed instead of OCT4A during early preimplantation phases in mice. To determine the expression states of OCT4 in murine preimplantation embryos, we conducted in-depth expression and functional analyses. We found that pluripotency-related OCT4 mainly localizes to the cytoplasm in early preimplantation phases, with no major nuclear localization until the 8–16-cell stage despite high expression in both oocytes and early embryos. RNA-sequencing analysis using oocytes and early preimplantation embryos could not identify the splice variants creating alternative forms of OCT4 protein. Forced expression of OCT4 in zygotes by the injection of polyadenylated mRNA clearly showed nuclear localization of OCT4 protein around 3–5-fold greater than physiological levels and impaired developmental competency in a dose-dependent manner. Embryos with modest overexpression of OCT4 could develop to the 16-cell stage; however, more than 50% of the embryos were arrested at this stage, similar to the results for OCT4 depletion. In contrast, extensive overexpression of OCT4 resulted in complete arrest at the 2-cell stage accompanied by downregulation of zygotically activated genes and repetitive elements related to the totipotent state. These results demonstrated that OCT4 protein localization was spatiotemporally altered during preimplantation development, and strict control of Oct4 protein levels was essential for proper totipotential reprogramming.


2021 ◽  
Vol 36 (Supplement_1) ◽  
Author(s):  
A Trout ◽  
P Xie ◽  
A Petrini ◽  
Z Rosenwaks ◽  
G Palermo

Abstract Study question What are the ideal culture conditions to enhance full preimplantation development of embryos generated by FVB somatic cell haploidization (SCH) in the mouse model? Summary answer The presence of a histone deacetylase inhibitor yielded the best morphokinetic development of expanded blastocysts generated by FVB SCH, comparable to control blastocysts. What is known already Various culture conditions and medium supplements have been proposed to promote preimplantation development of embryos generated by SCH, including supplementation with trichostatin A (TSA), fasudil, scriptaid, and RAD–51 stimulatory compound–1 (RS–1). TSA and scriptaid, both histone-deacetylase inhibitors, have been found to improve embryo development following nuclear transfer by enhancing histone acetylation and cellular reprogramming. Additionally, fasudil is a Rho-associated kinase inhibitor that has been shown to reduce apoptosis and promote cell proliferation. Finally, RS–1 stimulates RAD51 activity, which promotes the repair of DNA damage and increases the efficacy of somatic cell reprogramming. Study design, size, duration B6D2F1 mouse metaphase II (MII) oocytes underwent enucleation and nuclear transfer, or were ICSI inseminated serving as controls. Reconstituted oocytes showing development of a meiotic-like spindle demonstrated successful SCH, and were ICSI inseminated. SCH conceptuses were cultured in one of three groups: KSOM, KSOM supplemented with TSA (TSA), or KSOM supplemented with fasudil, scriptaid, and RS–1 (Cocktail). ICSI controls (ICSIC) were cultured in KSOM medium. Fertilization and full preimplantation development were compared among all groups. Participants/materials, setting, methods Ooplasts were generated from MII oocytes by removing spindle complexes under OosightÔ visualization and cytochalasin B exposure. A single FVB mouse cumulus cell was transferred into the perivitelline space and fused with the ooplast, facilitated by Sendai virus. Reconstructed oocytes with novel pseudo-meiotic spindles underwent piezo-ICSI and were cultured in different media conditions in a time-lapse imaging system up to 96h. TSA and Cocktail embryos had media changed to regular KSOM 10 hours after insemination. Main results and the role of chance A total of 274 B6D2F1 MII oocytes were enucleated, resulting in a 95.9% survival rate. All ooplasts survived nuclear transfer and 62.1% successfully haploidized after 2 hours. ICSIC and reconstituted SCH oocytes survived piezo-ICSI at rates of 81.5% and 57.0%, respectively (P < 0.01). SCH embryos were then allocated into KSOM, TSA supplied, and Cocktail media. Fertilization rates for ICSIC, KSOM, and TSA embryos were 92.4%, 90.7%, and 94.4%, respectively, while the rate for embryos cultured in Cocktail was only 71.9% (P < 0.03). While embryos cultured in Cocktail had a comparable 2-cell timing to ICSIC, embryos in TSA reached developmental milestones with a closer timing to the ICSIC, having minor delays at the 3-, 4-, and 6-cell stages (P < 0.05). KSOM- and Cocktail-cultured embryos were delayed at most of the stages (P < 0.01), except for the two-pronuclei appearance. Although the TSA group displayed the best embryo developmental pattern, the final rate of blastocyst development was somewhat homogeneous with rates of 15.4%, 23.5%, and 13.0% for the KSOM, TSA, and Cocktail groups, respectively (P < 0.001), and remarkably lower than the ICSIC (81.6%). Limitations, reasons for caution Although live pups have been obtained using BDF cumulus cells, embryos generated by FVB cumulus cells show a remarkably lower blastocyst development, but maintain morphokinetic characteristics similar to ICSIC in the presence of TSA. Wider implications of the findings: While using different strains to enhance genetic variance, the morphokinetic analysis of preimplantation embryos in ideal culture conditions is paramount to the progress of neogametogenesis. The implementation of this technique may soon help create genotyped oocytes for women with compromised ovarian reserve. Trial registration number N/A


Author(s):  
Yu Takahashi ◽  
Yu Inoue ◽  
Keitaro Kuze ◽  
Shintaro Sato ◽  
Makoto Shimizu ◽  
...  

Abstract Intestinal organoids better represent in vivo intestinal properties than conventionally used established cell lines in vitro. However, they are maintained in three-dimensional culture conditions that may be accompanied by handling complexities. We characterized the properties of human organoid-derived two-dimensionally cultured intestinal epithelial cells (IECs) compared with those of their parental organoids. We found that the expression of several intestinal markers and functional genes were indistinguishable between monolayer IECs and organoids. We further confirmed that their specific ligands equally activate intestinal ligand-activated transcriptional regulators in a dose-dependent manner. The results suggest that culture conditions do not significantly influence the fundamental properties of monolayer IECs originating from organoids, at least from the perspective of gene expression regulation. This will enable their use as novel biological tools to investigate the physiological functions of the human intestine.


2008 ◽  
Vol 20 (1) ◽  
pp. 169 ◽  
Author(s):  
C. E. McHughes ◽  
G. K. Springer ◽  
L. D. Spate ◽  
R. Li ◽  
R. J. Woods ◽  
...  

Identification of transcripts that are present at key development stages of preimplantation embryos is critical for a better understanding of early embryogenesis. To that end, this project had two goals. The first was to characterize the relative abundance of multiple transcripts during several developmental stages, including metaphase II-stage oocytes (MPII), and 2-cell-stage (2-cell), precompact morula (PCM), and in vitro-produced blastocyst-stage (IVTBL) embryos. The second was to characterize differences in the relative abundance of transcripts present in in vivo- (IVVBL), in vitro-, and nuclear transfer-produced (NTBL) blastocysts. It was our hypothesis that the identification of differentially represented transcripts from these stages would reveal not only developmentally important genes, but also genes that might be aberrantly expressed due to embryo production techniques. Individual clusters from a large bovine EST project (http://genome.rnet.missouri.edu/Bovine/), which focused on female reproductive tissues and embryos, were compared using Fisher's exact test weighted by number of transcripts per tissue by gene (SAS PROC FREQ; SAS Institute, Inc., Cary, NC, USA). Of the 3144 transcripts that were present during embryogenesis, 125 were found to be differentially represented (P < 0.01) in at least one pairwise comparison (Table 1). Some transcripts found to increase in representation from the MPII to the 2-cell stage include protein kinases, PRKACA and CKS1, as well as the metabolism-related gene, PTTG1. These same transcripts were also found to decrease in representation from the 2-cell to the PCM stage. RPL15 (translation) and FTH1 (immune function) were both more highly represented in the PCM than in the 2-cell stage. From PCM to IVTBL, we saw an increase in RPS11, another translation-related transcript. When comparing blastocyst-stage embryos from different production techniques, several transcripts involved in energy production (e.g., COX7B and COX8A) were found to be more highly represented in the NTBL than in the IVTBL. COX8A was also more highly represented in the IVVBL than in the IVTBL. By investigating these differentially represented transcripts, we will be able to better understand the developmental implications of embryo manipulation. We may also be able to better develop reproductive technologies that lead to in vitro- and nuclear transfer-derived embryos which more closely follow a normal program of development. Table 1. Differentially represented transcripts between developmental stages


Zygote ◽  
2012 ◽  
Vol 21 (2) ◽  
pp. 203-213 ◽  
Author(s):  
S. Eswari ◽  
G. Sai Kumar ◽  
G. Taru Sharma

SummaryThe objective of this study was to evaluate the effect of supplementation of recombinant leukaemia inhibitory factor (LIF) in culture media on blastocyst development, total cell number and blastocyst hatching rates and the reverse transcription-polymerase chain reaction analysis of preimplantation buffalo embryos to determine whether they contain the LIF-encoding mRNA and its beta receptor (LIFRβ) genes in different stages of preimplantation buffalo embryos. Cumulus–oocyte complexes retrieved from slaughterhouse buffalo ovaries were matured in vitro and fertilized using frozen buffalo semen. After 18 h of co-incubation with sperm, the presumptive zygotes were cultured in modified synthetic oviductal fluid without (control) or with rhLIF (100 ng/ml). There was no significant difference in the overall cleavage rate up to morula stage however the development of blastocysts, hatching rate and total cell numbers were significantly higher in the LIF-treated group than control. Transcripts for LIFRβ were detected from immature, in vitro-matured oocytes and in the embryos up to blastocyst stage, while transcripts for the LIF were detected from 8–16-cell stage up to blastocyst, which indicated that embryo-derived LIF can act in an autocrine manner on differentiation process and blastocyst formation. This study indicated that the addition of LIF to the embryo culture medium improved development of blastocysts, functional (hatching) and morphological (number of cells) quality of the blastocysts produced in vitro. The stage-specific expression pattern of LIF and LIFRβ mRNA transcripts in buffalo embryos indicated that LIF might play an important role in the preimplantation development and subsequent implantation of buffalo embryos.


Reproduction ◽  
2006 ◽  
Vol 131 (5) ◽  
pp. 895-904 ◽  
Author(s):  
Hakan Sagirkaya ◽  
Muge Misirlioglu ◽  
Abdullah Kaya ◽  
Neal L First ◽  
John J Parrish ◽  
...  

Expression of embryonic genes is altered in different culture conditions, which influence developmental potential both during preimplantation and fetal development. The objective of this study was to define the effects of culture conditions on: bovine embryonic development to blastocyst stage, blastocyst cell number, apoptosis and expression patterns of a panel of developmentally important genes. Bovine embryos were culturedin vitroin three culture media containing amino acids, namely potassium simplex optimization medium (KSOMaa), Charles Rosenkrans 1 (CR1aa) and synthetic oviductal fluid (SOFaa). Apoptosis in blastocysts was determined by TUNEL assay and expression profiles of developmentally important genes were assayed by real-time PCR.In vivo-produced bovine blastocysts were used as controls for experiments determining gene expression patterns. While the cleavage rates did not differ, embryos cultured in SOFaa had higher rates of development to blastocyst stage (P< 0.05). Mean cell numbers and percentages of apoptotic cells per blastocyst did not differ among the groups. Expression of the heat shock protein 70 (Hsp70) gene was significantly up-regulated in both CR1aa and KSOMaa when compared with SOFaa (P< 0.001). DNA methyltransferase 3a (Dnmt3a) expression was higher in embryos cultured in CR1aa than in those cultured in SOFaa (P< 0.001). Expression of interferon tau (IF-τ) and insulin-like growth factor II receptor (Igf-2r) genes was significantly up-regulated in KSOMaa when compared with CR1aa (P< 0.001). Gene expression did not differ betweenin vivo-derived blastocysts and theirin vitro-derived counterparts. In conclusion, SOFaa supports higher development to blastocyst stage than KSOMaa and CR1aa, and the culture conditions influence gene expression.


1994 ◽  
Vol 14 (7) ◽  
pp. 4694-4703
Author(s):  
E M Thompson ◽  
E Christians ◽  
M G Stinnakre ◽  
J P Renard

Eukaryotic interphase chromatin is thought to be organized into topologically discrete, independent domains acting as units upon which differential patterns of gene expression are established. Sequences which attach chromatin to in vitro preparations of a nucleoprotein matrix (scaffold attachment regions [SARs]) may act as domain boundaries, but their role remains poorly defined compared with those of other elements such as locus control regions. We have produced mice homozygous for a transgene which is transcribed as early as the activation of the embryonic genome at the two-cell stage and which is expressed ubiquitously in a number of differentiated tissues. Transgenic lines were generated in the presence or absence of flanking SAR sequences, creating an original model which enabled us to examine the effects of these elements at different developmental stages. In the preimplantation mouse embryo, flanking SARs stimulated transgene expression in a copy-dependent manner. In contrast, in the differentiated tissues of newborn and adult mice, no significant SAR-dependent increase in transgene expression was found, correlation with copy number was lost, and position effects were observed. These results suggest a limited capacity of SARs to act as insulating elements but are consistent with a proposed model of SAR-mediated chromatin opening and closing.


1982 ◽  
Vol 35 (2) ◽  
pp. 187 ◽  
Author(s):  
GM Harlow ◽  
P Quinn

The culture conditions for the development in vitro of (C57BL/6 X CBA) F2 hybrid two-cell embryos to the blastocyst stage have been optimized. Commercially available pre-sterile disposable plastic culture dishes supported more reliable development than re-usable washed glass tubes. The presence of an oil layer reduced the variability in development. An average of 85 % of blastocysts developed from hybrid two-cell embryos cultured in drops of Whitten's medium under oil in plastic culture dishes in an atmosphere of 5% O2 : 5% CO2 : 90% N2 ? The time taken for the total cell number to double in embryos developing in vivo was 10 h, and in cultured embryos 17 h. Embryos cultured in vitro from the two-cell stage to blastocyst stage were retarded by 18-24 h in comparison with those remaining in vivo. Day-4 blastocysts in vivo contained 25-70 cells (mean 50) with 7-28 (mean 16) of these in the inner cell mass. Cultured blastocysts contained 19-73 cells (mean 44) with 8-34 (mean 19) of these in the inner cell mass. In the uterine environment, inner-cell-mass blastomeres divided at a faster rate than trophectoderm blastomeres and it is suggested that a long cell cycle is associated with terminal differentiation. Although cultured blastocysts and inner cell masses contained the same number of cells as blastocysts and inner cell masses in vivo, the rate of cell division in cultured inner cell masses was markedly reduced.


2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Nilay Kuşcu ◽  
Mariano Bizzarri ◽  
Arturo Bevilacqua

Myo-inositol (myo-Ins) has a physiological role in mammalian gametogenesis and embryonic development and a positive clinical impact on human medically assisted reproduction. We have previously shown that mouse embryo exposure to myo-Ins through preimplantation developmentin vitroincreases proliferation activity and blastocyst production, representing an improvement in culture conditions. We have herein investigated biochemical mechanisms elicited by myo-Ins in preimplantation embryos and evaluated myo-Ins effects on postimplantation/postnatal development. To this end naturally fertilized embryos were culturedin vitroto blastocyst in the presence or absence of myo-Ins and analyzed for activation of the PKB/Akt pathway, known to modulate proliferation/survival cellular processes. In parallel, blastocyst-stage embryos were transferred into pseudopregnant females and allowed to develop to term and until weaning. Results obtained provide evidence that myo-Ins induces cellular pathways involving Akt and show that (a) exposure of preimplantation embryos to myo-Ins increases the number of blastocysts available for uterine transfer and of delivered animals and (b) the developmental patterns of mice obtained from embryos cultured in the presence or absence of myo-Ins, up to three weeks of age, overlap. These data further identify myo-Ins as a possibly important supplement for human preimplantation embryo culture in assisted reproduction technology.


2012 ◽  
Vol 56 (2) ◽  
pp. 211-216 ◽  
Author(s):  
Ján Bystriansky ◽  
Ján Burkuš ◽  
Štefan Juhás ◽  
Dušan Fabian ◽  
Juraj Koppel

Abstract High plasma urea nitrogen concentration has been proposed as an important factor contributing to the decline in reproductive parameters of domestic animals. The aim of this study was to evaluate the effect of urea on the development of preimplantation embryos in a mouse model. During in vivo tests, acute renal failure (ARF) accompanied by hyper-uraemia was induced by intramuscular administration of glycerol (50%) into hind limbs of fertilised dams. During in vitro tests, embryos collected from healthy dams were cultured in a medium with the addition of various concentrations of urea from the 4-cell stage to the blastocyst stage. Stereomicroscopic evaluation and fluorescence staining of embryos obtained from dams with ARF showed that high blood urea is connected with an increase in the number blastocysts containing at least one apoptotic cell and in the incidences of dead cells per blastocyst, but it did not affect their ability to reach the blastocyst stage. In vitro tests showed that culture of embryos with urea at concentration of 10 mM negatively affected the quality of obtained blastocysts. Blastocysts showed significantly lower numbers of cells and increased incidence of dead cells. An increase in apoptosis incidence was observed even in blastocysts obtained from cultures with 5 mM urea. Urea at concentrations 50 mM and higher negatively affected the ability of embryos to reach the blastocyst stage and the highest used concentrations (from 500 mM) caused overall developmental arrest of embryos at the 4- or 5- cell stage. These results show that elevated levels of urea may cause changes in the microenvironment of developing preimplantation embryos, which can negatively affect their quality. Embryo growth remains un-affected up to very high concentrations of urea.


Sign in / Sign up

Export Citation Format

Share Document