Formation of fibrin at sights of conceptus adhesion in the ewe

Reproduction ◽  
2021 ◽  
Author(s):  
Yuta Matsuno ◽  
Yahia A Amin ◽  
Kazuya Kusama ◽  
Kazuhiko Imakawa

In ruminants, various molecules are involved in regulating conceptus attachment and adhesion; however, molecules that maintain the conceptus adhesion have not been well characterized. We hypothesized that conceptus must produce a molecule(s), yet uncharacterized or overlooked, which maintain conceptus adhesion to the uterine epithelium. In this study, we aimed to identify new candidate(s) in conceptus secretory proteins responsible for maintaining conceptus adhesion in sheep. We performed RNA-sequence analysis with ovine conceptuses, followed by endometria obtained from pregnant animals on day 15 (P15: pre-attachment), 17 (P17: right after attachment), and 21 (P21: post-attachment; adhesion) and iTRAQ analysis of uterine flushing on P15 and P17. To identify the proteins secreted from conceptuses, we cross-referenced the transcriptome and proteome data. These analyses identified 16 and 26 proteins as conceptus secretory proteins on P15 and P17, respectively. Gene ontology analysis revealed that the conceptus secretory proteins were enriched in those categorized to fibrinolysis and coagulation. RT-qPCR analysis verified that the expression levels of transcripts in conceptuses encoding coagulation factors, fibrinogen subunits, and fibrinolysis factors were significantly higher on P21 than on P15 or P17, which were supported by those through in situ hybridization, western blotting and immunohistochemistry. Histology analysis confirmed that fibrin protein was present at the conceptus adhesion region on P21. These results suggest that in addition to the numerous adhesion molecules so far characterized, fibrin is a new candidate molecule for maintaining conceptus adhesion for pregnancy continuation in ruminants.

2019 ◽  
Vol 20 (16) ◽  
pp. 3995 ◽  
Author(s):  
Shubo Jin ◽  
Yuning Hu ◽  
Hongtuo Fu ◽  
Sufei Jiang ◽  
Yiwei Xiong ◽  
...  

Gem-associated protein 2-like isoform X1 (GEM) was previously predicted to be involved in the sexual development of male Macrobrachium nipponense. In this study, we analyze the GEM functions in depth using quantitative polymerase chain reaction (qPCR), in situ hybridization, and RNA interference (RNAi). The full-length Mn-GEM cDNA sequence was 1018 base pairs (bp) long with an open reading frame of 777 bp encoding 258 amino acids. qPCR analysis of Mn-GEM in different tissues and developmental stages showed that Mn-GEM was highly expressed in the gonad and from post-larval developmental stage day 5 (PL5) to PL15, which indicated that GEM has potential roles in gonad differentiation and development in M. nipponense. In situ hybridization and qPCR analysis of various stages of the reproductive cycle of the testis and ovary indicated that GEM may promote spermatid development and gametogenesis in M. nipponense. After injecting with double-stranded RNA (dsRNA) of Mn-GEM, mRNA expression of Mn-insulin-like androgenic gland hormone (Mn-IAG) and the content of testosterone increased with the decrease of Mn-GEM expression, indicating that GEM has negative effects on the male sexual differentiation and development in M. nipponense. Results of this study highlight the functions of GEM in M. nipponense, which can be applied to future studies of male sexual development in M. nipponense and other crustacean species.


1995 ◽  
Vol 43 (1) ◽  
pp. 85-96 ◽  
Author(s):  
X He ◽  
L Shen ◽  
A Bjartell ◽  
B Dahlbäck

Vitamin K-dependent protein S is an anticoagulant plasma protein that functions as a co-factor to activated protein C in the degradation of coagulation factors Va and VIIIa. We investigated the tissue/cellular distribution of protein S synthesis by Northern blotting, in situ hybridization, and immunohistochemistry. Northern blotting together with in situ hybridization, using specific oligodeoxynucleotide probes, demonstrated protein S mRNA in liver, lung, testis, epididymis, ovary, uterus, and brain. In the reproductive system, protein S mRNA was present in the cytoplasm of Leydig cells, interstitial cells of the ovary, epithelial cells of the epididymis, and in the endometrium, including endometrial mucous glandular membrane in the myometrium. Bronchial epithelial cells and alveolar macrophages were positive in the respiratory system. In the central nervous system, pyramidal neurons in the cerebral cortex and in the hippocampal region, and dentate fascia neurons gave strongly positive signals. Immunohistochemistry with monoclonal antibodies yielded a staining pattern that correlated well with results of in situ hybridization. In conclusion, results from Northern blotting, in situ hybridization, and immunohistochemistry suggested that rabbit protein S is expressed in several extrahepatic tissues. The presence of protein S transcripts in these fully differentiated cells suggests a cell type-specific gene expression which may be related to local anticoagulation or to other as yet unknown protein S functions.


Entropy ◽  
2019 ◽  
Vol 21 (3) ◽  
pp. 221 ◽  
Author(s):  
Ido Cohen ◽  
Eli David ◽  
Nathan Netanyahu

In recent years, large datasets of high-resolution mammalian neural images have become available, which has prompted active research on the analysis of gene expression data. Traditional image processing methods are typically applied for learning functional representations of genes, based on their expressions in these brain images. In this paper, we describe a novel end-to-end deep learning-based method for generating compact representations of in situ hybridization (ISH) images, which are invariant-to-translation. In contrast to traditional image processing methods, our method relies, instead, on deep convolutional denoising autoencoders (CDAE) for processing raw pixel inputs, and generating the desired compact image representations. We provide an in-depth description of our deep learning-based approach, and present extensive experimental results, demonstrating that representations extracted by CDAE can help learn features of functional gene ontology categories for their classification in a highly accurate manner. Our methods improve the previous state-of-the-art classification rate (Liscovitch, et al.) from an average AUC of 0.92 to 0.997, i.e., it achieves 96% reduction in error rate. Furthermore, the representation vectors generated due to our method are more compact in comparison to previous state-of-the-art methods, allowing for a more efficient high-level representation of images. These results are obtained with significantly downsampled images in comparison to the original high-resolution ones, further underscoring the robustness of our proposed method.


Author(s):  
Barbara Trask ◽  
Susan Allen ◽  
Anne Bergmann ◽  
Mari Christensen ◽  
Anne Fertitta ◽  
...  

Using fluorescence in situ hybridization (FISH), the positions of DNA sequences can be discretely marked with a fluorescent spot. The efficiency of marking DNA sequences of the size cloned in cosmids is 90-95%, and the fluorescent spots produced after FISH are ≈0.3 μm in diameter. Sites of two sequences can be distinguished using two-color FISH. Different reporter molecules, such as biotin or digoxigenin, are incorporated into DNA sequence probes by nick translation. These reporter molecules are labeled after hybridization with different fluorochromes, e.g., FITC and Texas Red. The development of dual band pass filters (Chromatechnology) allows these fluorochromes to be photographed simultaneously without registration shift.


Author(s):  
Gary Bassell ◽  
Robert H. Singer

We have been investigating the spatial distribution of nucleic acids intracellularly using in situ hybridization. The use of non-isotopic nucleotide analogs incorporated into the DNA probe allows the detection of the probe at its site of hybridization within the cell. This approach therefore is compatible with the high resolution available by electron microscopy. Biotinated or digoxigenated probe can be detected by antibodies conjugated to colloidal gold. Because mRNA serves as a template for the probe fragments, the colloidal gold particles are detected as arrays which allow it to be unequivocally distinguished from background.


2007 ◽  
Vol 177 (4S) ◽  
pp. 596-597
Author(s):  
Joseph P. Alukal ◽  
Bobby B. Najari ◽  
Wilson Chuang ◽  
Lata Murthy ◽  
Monica Lopez-Perdomo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document