scholarly journals Design and control optimization of energy systems of smart buildings today and in the near future

2017 ◽  
Vol 4 (1) ◽  
pp. 58 ◽  
Author(s):  
Shengwei WANG ◽  
Wenjie GANG
Electronics ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 977
Author(s):  
Rosa M. García Salvador ◽  
Nuria Novas ◽  
Alfredo Alcayde ◽  
Dalia El Khaled ◽  
Francisco G. Montoya

The contributions of researchers at a global level in the journal Electronics in the period 2012–2020 are analyzed. The objective of this work is to establish a global vision of the issues published in the Electronic magazine and their importance, advances and developments that have been particularly relevant for subsequent research. The magazine has 15 thematic sections and a general one, with the programming of 385 special issues for 2020–2021. Using the Scopus database and bibliometric techniques, 2310 documents are obtained and distributed in 14 thematic communities. The communities that contribute to the greatest number of works are Power Electronics (20.13%), Embedded Computer Systems (13.59%) and Internet of Things and Machine Learning Systems (8.11%). A study of the publications by authors, affiliations, countries as well as the H index was undertaken. The 7561 authors analyzed are distributed in 87 countries, with China being the country of the majority (2407 authors), followed by South Korea (763 authors). The H-index of most authors (75.89%) ranges from 0 to 9, where the authors with the highest H-Index are from the United States, Denmark, Italy and India. The main publication format is the article (92.16%) and the review (5.84%). The magazine publishes topics in continuous development that will be further investigated and published in the near future in fields as varied as the transport sector, energy systems, the development of new broadband semiconductors, new modulation and control techniques, and more.


Author(s):  
X H Wang ◽  
H T Chen ◽  
X X Zhu ◽  
J L Zhang ◽  
W L Liu ◽  
...  

Molecules ◽  
2020 ◽  
Vol 26 (1) ◽  
pp. 74
Author(s):  
Abhishek RoyChowdhury ◽  
Pallabi Mukherjee ◽  
Saumik Panja ◽  
Rupali Datta ◽  
Christos Christodoulatos ◽  
...  

The use of insensitive munitions such as 3-nitro-1,2,4-triazol-5-one (NTO) is rapidly increasing and is expected to replace conventional munitions in the near future. Various NTO treatment technologies are being developed for the treatment of wastewater from industrial munition facilities. This is the first study to explore the potential phytoremediation of industrial NTO-wastewater using vetiver grass (Chrysopogon zizanioides L.). Here, we present evidence that vetiver can effectively remove NTO from wastewater, and also translocated NTO from root to shoot. NTO was phytotoxic and resulted in a loss of plant biomass and chlorophyll. The metabolomic analysis showed significant differences between treated and control samples, with the upregulation of specific pathways such as glycerophosphate metabolism and amino acid metabolism, providing a glimpse into the stress alleviation strategy of vetiver. One of the mechanisms of NTO stress reduction was the excretion of solid crystals. Scanning electron microscopy (SEM), electrospray ionization mass spectrometry (ESI-MS), and Fourier-transform infrared spectroscopy (FTIR) analysis confirmed the presence of NTO crystals in the plant exudates. Further characterization of the exudates is in progress to ascertain the purity of these crystals, and if vetiver could be used for phytomining NTO from industrial wastewater.


Physchem ◽  
2021 ◽  
Vol 1 (1) ◽  
pp. 26-44
Author(s):  
Chiara Ferrara ◽  
Riccardo Ruffo ◽  
Piercarlo Mustarelli

Extended interphases are playing an increasingly important role in electrochemical energy storage devices and, in particular, in lithium-ion and lithium metal batteries. With this in mind we initially address the differences between the concepts of interface and interphase. After that, we discuss in detail the mechanisms of solid electrolyte interphase (SEI) formation in Li-ion batteries. Then, we analyze the methods for interphase characterization, with emphasis put on in-situ and operando approaches. Finally, we look at the near future by addressing the issues underlying the lithium metal/electrolyte interface, and the emerging role played by the cathode electrolyte interphase when high voltage materials are employed.


2014 ◽  
Vol 31 (5) ◽  
pp. 3-20 ◽  
Author(s):  
John Urry

Energy forms and their extensive scale are remarkably significant for the ways that societies are organized. This article shows the importance of how societies are ‘energized’ and especially the global growth of ‘fossil fuel societies’. Much social thought remains oblivious to the energy revolution realized over the past two to three centuries which set the ‘West’ onto a distinct trajectory. Energy is troubling for social thought because different energy systems with their ‘lock-ins’ are not subject to simple human intervention and control. Analyses are provided here of different fossil fuel societies, of coal and oil, with the latter enabling the liquid, mobilized 20th century. Consideration is paid to the possibilities of reducing fossil fuel dependence but it is shown how unlikely such a ‘powering down’ will be. The author demonstrates how energy is a massive problem for social theory and for 21st-century societies. Developing post-carbon theory and especially practice is far away but is especially urgent.


2011 ◽  
Vol 148-149 ◽  
pp. 509-515
Author(s):  
De Dong Hu ◽  
Wei Qiang Wang ◽  
Zhi Quan Zhao ◽  
Gui Min Zhang ◽  
Wen Qin Bai ◽  
...  

The size of ultrafine particles ranges between 1~1000nm, including metal, non-metallic, organic, inorganic and biological powder materials. Because of its inherent surface effect, small size effect and quantum effect, it has special optical properties, thermal properties, magnetic properties and mechanical properties which had been widely used in various industrial fields. Supercritical fluid technology has been used to obtain ultra-fine powder of several kind of materials. This work is focused on the systematic production of ultra-fine powder using RESS and SAS process. A systematic summary is made and different measures adopted according to the related circumstances are presented. We also summarize the effect of the process parameters of RESS and SAS process. The ongoing and more extensive research on mechanism and control measures of size, morphology and size distribution of particle should provide a better understanding of particle formation mechanism and achieve the goal of integrated use of different measures to control particle preparation process in the near future.


Sign in / Sign up

Export Citation Format

Share Document