scholarly journals High-Temperature X–ray Diffraction Studies of Al–Ni–Hf Ternary Alloys

2017 ◽  
Vol 18 (3) ◽  
pp. 324-327 ◽  
Author(s):  
O.V. Shved ◽  
S.I. Mudry ◽  
Yu.O. Kulyk

Phase content and temperature dependences of cell parameters for intermetallics HfNi2Al5, Hf6Ni8Al15 and Ni2Al3, existed in Al-Ni-Hf ternary system have been studied by means of X-ray diffraction method. Experimental values of cell parameters at different temperature were used to calculate the thermal expansion coefficients and their temperature dependences. It is shown that for intermetallic phase with cubic structure temperature dependence of thermal expansion coefficient is significantly different than for l one with tetragonal structure.

2019 ◽  
Vol 1 (96 extended issue) ◽  
pp. 5-11
Author(s):  
O. Shved ◽  
S. Mudry ◽  
V. Girzhon ◽  
O. Smolyakov

Purpose: of this paper is to deep and more complete knowledge about the features of phase and structure formation in Al-based alloys with transition metals (TM) Fe and V at rapid cooling from melt. It is known, that nonequilibrium synthesis conditions of such alloys lead to quasicrystalline, amorphous or metastable phases formation, which can significantly improve the physical-chemical properties and first of all the mechanical ones. But understanding of compositional dependences of structure features at formation under nonequilibrium conditions and the correlation of these dependences with physical properties of alloys is far to be clear. Design/methodology/approach: Structure of Al-enriched Al-V, Al-V-Fe rapid cooled alloys was studied by X-ray diffraction method. In order to estimate the influence of structural state of alloy on the mechanical properties the integral microhardness was studied by Vickers method. Findings: Two quasicrystalline icosaedral phases with different cell parameters are revealed in ternary alloys Al100-3xV2xFex (x=2-4). Increasing of transition metal content promotes the formation of phase with higher quasicell parameter embedded in amorphous matrix. With increasing of the transition elements total content from 6 up to 12 at. % the microhardness of alloys increased gradually from 867 to 3050 MPa. Research limitations/implications: Research of nonequilibrium alloys revealed crystalline structure of Al-V alloys and quasicrystalline embedded in amorphous matrix of Al-Fe-V ternary alloys. Obtained results suppose that further structure and physical properties studies of Al-Fe-V alloys will allows to find the conditions to control the producing of materials with desired properties. Practical implications: Using of rapid cooling method for synthesis of Al-enriched Al-Fe-V alloys give an opportunity to produce alloys with significantly improved mechanical properties. Originality/value: Nonequilibrium conditions of cooling allow significantly changes the structure and properties.


1999 ◽  
Vol 32 (5) ◽  
pp. 1010-1011 ◽  
Author(s):  
R. Mittal ◽  
S. L. Chaplot ◽  
N. P. Lalla ◽  
R. K. Mishra

Temperature-dependent X-ray diffraction measurements are reported for ZrMo2O8in the trigonal phase from 80 to 925 K. The measurements reveal highly anisotropic thermal expansion coefficients with average values of −3.9 × 10−6and 52 × 10−6 K−1for theaandccell parameters, respectively.


2007 ◽  
Vol 22 (4) ◽  
pp. 352-357 ◽  
Author(s):  
D. R. Hummer ◽  
P. J. Heaney ◽  
J. E. Post

High-precision unit-cell parameters for the TiO2 polymorphs anatase and rutile at temperatures between 300 and 575 K have been determined using Rietveld analysis of synchrotron powder XRD data. Polynomial models were used to express the tetragonal unit-cell parameters as a function of absolute temperature, with a (anatase)=1.759 37×10−8×T2+6.418 16×10−6×T+3.779 84, c (anatase)=6.6545×10−8×T2+4.0464×10−5×T+9.4910, V (anatase)=2.237 58×10−6×T2+1.027 77×10−3×T+135.602, a (rutile)=−6.636 42×10−11×T3+1.005 01×10−7×T2−1.009 9310−5×T+4.586 34, c (rutile)=−4.115 50×10−11×T3+6.405 94×10−8×T2+4.675 61×10−7T+2.951 81, and V (rutile)=−2.7790×10−9×T3+4.2386×10−6×T2−3.3551×10−4×T+62.100. The polynomial expressions were used to calculate linear (α) and volume (β) thermal expansion coefficients of anatase and rutile between 300 and 575 K. At 298.15 K, these values were αa=4.46943×10−6 K−1, αc=8.4283×10−6 K−1, and β=17.3542×10−6 K−1 for anatase, and αa=6.99953×10−6 K−1, αc=9.36625×10−6 K−1, and β=28.680×10−6 K−1 for rutile.


2019 ◽  
Vol 61 (10) ◽  
pp. 1985
Author(s):  
Р.И. Гуляева ◽  
С.А. Петрова ◽  
В.М. Чумарев ◽  
А.Н. Мансурова

The heat capacity of the synthesized FeTa2O6 iron tantalate was measured in the temperature range of 323-1103 K by the ratio method using a thermal analyzer with combined thermogravimetry and scanning calorimetry. The phase transition temperatures were determined. Structural changes and thermal expansion of the oxide in the range of 300-1173 K were studied by high-temperature X-ray diffraction. The temperature dependences of the unit cell parameters were approximated by third-degree polynomials. From the data obtained, the values of thermal expansion coefficients and anisotropy factors were calculated.


1990 ◽  
Vol 68 (8) ◽  
pp. 1352-1356 ◽  
Author(s):  
Walter Abriel ◽  
André Du Bois ◽  
Marek Zakrzewski ◽  
Mary Anne White

The crystal structure of the title compound has been determined by single crystal X-ray diffraction data collected at 293 K, and refined to a final Rw of 0.057. The crystals are rhombohedral, space group [Formula: see text], with a = 27.134(8) Å, c = 10.933(2) Å, and Z = 18. The mole ratio of Dianin's compound (4-p-hydroxyphenyl-2,2,4-trimethylchroman) to CCl4 is 6:1. The guest molecules are disordered. X-ray powder diffraction was carried out in the temperature range from 10 to 300 K. From this, the thermal expansion coefficients for the a- and c-axes and the volume have been determined. Keywords: thermal expansion, crystal structure, clathrate.


2012 ◽  
Vol 730-732 ◽  
pp. 100-104
Author(s):  
Agata Lisińska-Czekaj

In the present study Bi6Fe2Ti3O18 (BFTO) ceramics has been fabricated by solid state reaction from the mixture of simple oxides viz. Bi2O3, TiO2 and Fe2O3. Stoichiometric mixture of the powders was thermally analyzed so parameters of the thermal treatment were determined. The EDS measurements have shown conservation of the chemical composition of the ceramic powder after calcination. Hot-pressing method was used for final densification of ceramic samples. The crystalline structure of the sintered samples was examined by X-ray diffraction method at room temperature. It was found that BFTO ceramics sintered at T=980 °C adopted the orthorhombic structure of Aba2 (41) space group with the following elementary cell parameters: a=5.4567(2)Å, b=49.418(2) and c=5.4826(2). Details concerning the atom’s positions are presented.


2008 ◽  
Vol 368-372 ◽  
pp. 1665-1667
Author(s):  
M.M. Wu ◽  
X.L. Xiao ◽  
Y.Z. Cheng ◽  
J. Peng ◽  
D.F. Chen ◽  
...  

A new series of solid solutions Dy2-xGdxMo4O15 (x = 0.0-0.9) were prepared. These compounds all crystallize in monoclinic structure with space group P21/c. The lattice parameters a, b, c and unit cell volumes V increase almost linearly with increasing gadolinium content. The intrinsic thermal expansion coefficients of Dy2-xGdxMo4O15 (x = 0.0 and 0.25) were obtained in the temperature range of 25 to 500°C with high-temperature X-ray diffraction. The correlation between thermal expansion and crystal structure was discussed.


2019 ◽  
Vol 33 (23) ◽  
pp. 1950271 ◽  
Author(s):  
Y. I. Aliyev ◽  
Y. G. Asadov ◽  
A. O. Dashdemirov ◽  
R. D. Aliyeva ◽  
T. G. Naghiyev ◽  
...  

The Ag[Formula: see text]Cu[Formula: see text]Se and Ag[Formula: see text]Cu[Formula: see text]Se compounds have been synthesized and grown as single crystals. High-temperature X-ray diffraction method was used to study polymorphic transformations. It is shown that the Ag[Formula: see text]Cu[Formula: see text]Se crystals of high-temperature FCC modification are decomposed into Ag2Se and AgCuSe when the temperature decreases below T = 488 K and Ag[Formula: see text]Cu[Formula: see text]Se is decomposed into Cu2Se and AgCuSe when the temperature decreases below T = 540 K. Transformations in both compounds are reversible. Crystalline parameters are obtained and the temperature dependence of the lattice parameters for each phase is built.


2005 ◽  
Vol 38 (6) ◽  
pp. 1038-1039 ◽  
Author(s):  
Robert Hammond ◽  
Klimentina Pencheva ◽  
Kevin J. Roberts ◽  
Patricia Mougin ◽  
Derek Wilkinson

Variable-temperature high-resolution capillary-mode powder X-ray diffraction is used to assess changes in unit-cell dimensions as a function of temperature over the range 188–328 K. No evidence was found for any polymorphic transformations over this temperature range and thermal expansion coefficients for urea were found to be αa= (5.27 ± 0.26) × 10−5 K−1and αc= (1.14 ± 0.057) × 10−5 K−1.


2013 ◽  
Vol 2013 ◽  
pp. 1-5 ◽  
Author(s):  
K. Rajesh ◽  
B. Milton Boaz ◽  
P. Praveen Kumar

Single crystals of pure and Lanthanum doped L-Alanine Tartrate were grown by slow evaporation method. The cell parameters were determined using single crystal X-ray diffraction method. To improve the physical properties of the LAT crystal, Lanthanum dopant was added by 2 mol%. ICP studies confirm the presence of Lanthanum in the grown LAT crystal. Transparency range of the crystal was determined using UV-VIS-NIR spectrophotometer. The functional groups of pure and doped LAT crystals were analyzed by FT-IR spectroscopy. Using Vickers microhardness tester, mechanical strength of the material was found. Dielectric studies of pure and doped LAT single crystals were carried out. The doped LAT crystal is found to have efficiency higher than that of pure LAT crystal.


Sign in / Sign up

Export Citation Format

Share Document