scholarly journals A Novel Mapping Strategy Utilizing Mouse Chromosome Substitution Strains Identifies Multiple Epistatic Interactions That Regulate Complex Traits

2020 ◽  
Vol 10 (12) ◽  
pp. 4553-4563
Author(s):  
Anna K. Miller ◽  
Anlu Chen ◽  
Jacquelaine Bartlett ◽  
Li Wang ◽  
Scott M. Williams ◽  
...  

The genetic contribution of additive vs. non-additive (epistatic) effects in the regulation of complex traits is unclear. While genome-wide association studies typically ignore gene-gene interactions, in part because of the lack of statistical power for detecting them, mouse chromosome substitution strains (CSSs) represent an alternate approach for detecting epistasis given their limited allelic variation. Therefore, we utilized CSSs to identify and map both additive and epistatic loci that regulate a range of hematologic- and metabolism-related traits, as well as hepatic gene expression. Quantitative trait loci (QTL) were identified using a CSS-based backcross strategy involving the segregation of variants on the A/J-derived substituted chromosomes 4 and 6 on an otherwise C57BL/6J genetic background. In the liver transcriptomes of offspring from this cross, we identified and mapped additive QTL regulating the hepatic expression of 768 genes, and epistatic QTL pairs for 519 genes. Similarly, we identified additive QTL for fat pad weight, platelets, and the percentage of granulocytes in blood, as well as epistatic QTL pairs controlling the percentage of lymphocytes in blood and red cell distribution width. The variance attributed to the epistatic QTL pairs was approximately equal to that of the additive QTL; however, the SNPs in the epistatic QTL pairs that accounted for the largest variances were undetected in our single locus association analyses. These findings highlight the need to account for epistasis in association studies, and more broadly demonstrate the importance of identifying genetic interactions to understand the complete genetic architecture of complex traits.

2020 ◽  
Author(s):  
Anna K. Miller ◽  
Anlu Chen ◽  
Jacquelaine Bartlett ◽  
Li Wang ◽  
Scott M. Williams ◽  
...  

AbstractThe genetic contribution of additive versus non-additive (epistatic) effects in the regulation of complex traits is unclear. While genome-wide association studies typically ignore gene-gene interactions, in part because of the lack of statistical power for detecting them, mouse chromosome substitution strains (CSSs) represent an alternate and powerful model for detecting epistasis given their limited allelic variation. Therefore, we utilized CSSs to identify and map both additive and epistatic loci that regulate a range of hematologic- and metabolism-related traits, as well as hepatic gene expression. Quantitative trait loci (QTLs) were identified using a CSS-based backcross strategy involving the segregation of variants on the A/J-derived substituted chromosomes 4 and 6 on an otherwise C57BL/6J genetic background. In the liver transcriptomes of offspring from this cross, we identified and mapped additive QTLs regulating the hepatic expression of 768 genes, and epistatic QTL pairs for 519 genes. Similarly, we identified additive QTLs for fat pad weight, platelets, and the percentage of granulocytes in blood, as well as epistatic QTL pairs controlling the percentage of lymphocytes in blood and red cell distribution width. The variance attributed to the epistatic QTL pairs was approximately equal to that of the additive QTLs; however, the SNPs in the epistatic QTL pairs that accounted for the largest variances were undetected in our single locus association analyses. These findings highlight the need to account for epistasis in association studies, and more broadly demonstrate the importance of identifying genetic interactions to understand the complete genetic architecture of complex traits.


2017 ◽  
Author(s):  
Anlu Chen ◽  
Yang Liu ◽  
Scott M. Williams ◽  
Nathan Morris ◽  
David A. Buchner

AbstractThe relative contributions of additive versus non-additive interactions in the regulation of complex traits remains controversial. This may be in part because large-scale epistasis has traditionally been difficult to detect in complex, multi-cellular organisms. We hypothesized that it would be easier to detect interactions using mouse chromosome substitution strains that simultaneously incorporate allelic variation in many genes on a controlled genetic background. Analyzing metabolic traits and gene expression levels in the offspring of a series of crosses between mouse chromosome substitution strains demonstrated that inter-chromosomal epistasis was a dominant feature of these complex traits. Epistasis typically accounted for a larger proportion of the heritable effects than those due solely to additive effects. These epistatic interactions typically resulted in trait values returning to the levels of the parental CSS host strain. Due to the large epistatic effects, analyses that did not account for interactions consistently underestimated the true effect sizes due to allelic variation or failed to detect the loci controlling trait variation. These studies demonstrate that epistatic interactions are a common feature of complex traits and thus identifying these interactions is key to understanding their genetic regulation.


Circulation ◽  
2020 ◽  
Vol 141 (Suppl_1) ◽  
Author(s):  
Anna Miller ◽  
Anlu Chen ◽  
David Buchner ◽  
Scott Williams

The genetic contribution of additive versus non-additive (epistasis) effects in the regulation of hematologic and other complex traits is unclear. Although many variants have been associated with a range of complex traits via genome wide association studies (GWAS), these loci combined in additive models do not account for most of the trait heritability. GWAS-type analyses typically ignore gene-gene interactions, in part because of the difficulty in detecting them in complex multicellular organisms, especially humans. We have previously shown that mouse chromosome substitution strains (CSSs) are a powerful model for detecting epistasis, and that for certain complex traits the relative contribution of epistasis to heritability is as important as additivity. We have now applied the use of these CSSs to identify and map additive and epistatic loci that regulate a range of hematological-related traits and hepatic gene expression levels. A modified backcross was performed with CSS strains carrying the A/J-derived substituted chromosomes 4 and 6 on an otherwise C57BL/6J genetic background. By analyzing the transcriptomes of offspring from this cross, we identified and mapped additive quantitative trait loci (QTLs) that regulated the expression of 770 genes, and epistatic QTLs for 802 genes. Similarly we performed a complete blood analysis of offspring from the cross and identified additive QTLs for platelets and percentage of granulocyte in the blood as well as epistatic QTLs controlling the percentage of lymphocytes in the blood (rs13477644, rs13478739; LOD = 3.4) and red cell distribution width (rs13477864, rs13478802; LOD = 3.7). The variance attributable to the epistatic QTLs was approximately equal to that of the additive QTLs, highlighting the importance of identifying genetic interactions. Of note, even the SNPs associated with the most significant epistatic interactions were undetected in our single loci GWAS-like association analyses, demonstrating the need to specifically test for gene-gene interactions in studies of complex traits. In summary, our studies identified epistatic loci in mice that are important regulators of hematological-related traits and gene expression. Additionally, our studies call attention to the importance of extending single loci GWAS-type analyses to include analyses of gene-gene interactions to improve our ability to identify genetic variants that regulate complex traits.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Chao-Yu Guo ◽  
Reng-Hong Wang ◽  
Hsin-Chou Yang

AbstractAfter the genome-wide association studies (GWAS) era, whole-genome sequencing is highly engaged in identifying the association of complex traits with rare variations. A score-based variance-component test has been proposed to identify common and rare genetic variants associated with complex traits while quickly adjusting for covariates. Such kernel score statistic allows for familial dependencies and adjusts for random confounding effects. However, the etiology of complex traits may involve the effects of genetic and environmental factors and the complex interactions between genes and the environment. Therefore, in this research, a novel method is proposed to detect gene and gene-environment interactions in a complex family-based association study with various correlated structures. We also developed an R function for the Fast Gene-Environment Sequence Kernel Association Test (FGE-SKAT), which is freely available as supplementary material for easy GWAS implementation to unveil such family-based joint effects. Simulation studies confirmed the validity of the new strategy and the superior statistical power. The FGE-SKAT was applied to the whole genome sequence data provided by Genetic Analysis Workshop 18 (GAW18) and discovered concordant and discordant regions compared to the methods without considering gene by environment interactions.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Gregory R. Keele ◽  
Jeremy W. Prokop ◽  
Hong He ◽  
Katie Holl ◽  
John Littrell ◽  
...  

AbstractChronic kidney disease (CKD), which can ultimately progress to kidney failure, is influenced by genetics and the environment. Genes identified in human genome wide association studies (GWAS) explain only a small proportion of the heritable variation and lack functional validation, indicating the need for additional model systems. Outbred heterogeneous stock (HS) rats have been used for genetic fine-mapping of complex traits, but have not previously been used for CKD traits. We performed GWAS for urinary protein excretion (UPE) and CKD related serum biochemistries in 245 male HS rats. Quantitative trait loci (QTL) were identified using a linear mixed effect model that tested for association with imputed genotypes. Candidate genes were identified using bioinformatics tools and targeted RNAseq followed by testing in a novel in vitro model of human tubule, hypoxia-induced damage. We identified two QTL for UPE and five for serum biochemistries. Protein modeling identified a missense variant within Septin 8 (Sept8) as a candidate for UPE. Sept8/SEPTIN8 expression increased in HS rats with elevated UPE and tubulointerstitial injury and in the in vitro hypoxia model. SEPTIN8 is detected within proximal tubule cells in human kidney samples and localizes with acetyl-alpha tubulin in the culture system. After hypoxia, SEPTIN8 staining becomes diffuse and appears to relocalize with actin. These data suggest a role of SEPTIN8 in cellular organization and structure in response to environmental stress. This study demonstrates that integration of a rat genetic model with an environmentally induced tubule damage system identifies Sept8/SEPTIN8 and informs novel aspects of the complex gene by environmental interactions contributing to CKD risk.


2016 ◽  
Vol 283 (1835) ◽  
pp. 20160569 ◽  
Author(s):  
M. E. Goddard ◽  
K. E. Kemper ◽  
I. M. MacLeod ◽  
A. J. Chamberlain ◽  
B. J. Hayes

Complex or quantitative traits are important in medicine, agriculture and evolution, yet, until recently, few of the polymorphisms that cause variation in these traits were known. Genome-wide association studies (GWAS), based on the ability to assay thousands of single nucleotide polymorphisms (SNPs), have revolutionized our understanding of the genetics of complex traits. We advocate the analysis of GWAS data by a statistical method that fits all SNP effects simultaneously, assuming that these effects are drawn from a prior distribution. We illustrate how this method can be used to predict future phenotypes, to map and identify the causal mutations, and to study the genetic architecture of complex traits. The genetic architecture of complex traits is even more complex than previously thought: in almost every trait studied there are thousands of polymorphisms that explain genetic variation. Methods of predicting future phenotypes, collectively known as genomic selection or genomic prediction, have been widely adopted in livestock and crop breeding, leading to increased rates of genetic improvement.


2021 ◽  
Vol 42 (1) ◽  
Author(s):  
Dinesh K. Saini ◽  
Yuvraj Chopra ◽  
Jagmohan Singh ◽  
Karansher S. Sandhu ◽  
Anand Kumar ◽  
...  

Circulation ◽  
2008 ◽  
Vol 118 (suppl_18) ◽  
Author(s):  
Margarete Mehrabian ◽  
Charles Farber ◽  
Peter Langfelder ◽  
Anatole Ghazalpour ◽  
Zhiqiang Zhou ◽  
...  

A recent meta-analysis of three large genome-wide association studies for HDL cholesterol levels revealed several highly significant associations, but altogether these explained less than 10% of the population variance of HDL. Since HDL levels are highly heritable, with heritability estimated at 50–70% in many studies, there are clearly many additional genes, and probably complex genetic and environmental interactions, involved in HDL metabolism. Thus, if “personalized medicine” is to become a reality, these complex factors must be addressed. Combined genetic-genomic approaches have rejuvenated the analysis of complex traits using mouse models, and here report an integrative genomic study of HDL in a large mouse cross. We previously reported the identification of loci associated with HDL cholesterol concentrations using a CXB F2 intercross. We have now generated a much larger CXB cross, consisting of 438 mice, and have integrated genome wide gene expression analysis of liver and adipose with quantitative trait locus (QTL) mapping and causality modeling. These studies were carried out on mice fed a low fat, chow diet and then switched to a high fat, ’Western’ diet. QTL analysis on the clinical traits using R/QTL (http://cran.r-project.org/) revealed a complex inheritance pattern with significant LOD scores at 9 loci, on chromosomes 1,2,4,5,8,9,10,16,18. Of these loci, 6 (chr: 1,4,5,10,16,18) were seen to be involved in genetic-dietary regulation of HDL cholesterol. Expression QTLs (eQTL) were determined using Agilent microarrays for 23,624 transcripts. Genes expressed within a 1-LOD support interval or correlated with HDL (p<2.7E-11) in both adipose and liver were identified. Using Network Edge Orienting (NEO) methods, causal relationships between the identified genes, related QTL peak markers and HDL levels were accessed. The genes were then ranked based on the NEO scores. In liver the highest ranked genes were associated with mitochondrial, ER and golgi trafficking. In adipose, on the other hand, pathways associated with cell signaling, transcription regulation and protein ubiquitation were predicted to be causal for HDL levels. In conclusion, our results reveal a large number of novel pathways and candidate genes for plasma lipid metabolism. This research has received full or partial funding support from the American Heart Association, AHA Western States Affiliate (California, Nevada & Utah).


Sign in / Sign up

Export Citation Format

Share Document