sequence kernel association test
Recently Published Documents


TOTAL DOCUMENTS

18
(FIVE YEARS 4)

H-INDEX

10
(FIVE YEARS 1)

2021 ◽  
Vol 12 ◽  
Author(s):  
Manyan Huang ◽  
Chen Lyu ◽  
Xin Li ◽  
Abrar A. Qureshi ◽  
Jiali Han ◽  
...  

Cutaneous squamous cell carcinoma (cSCC) accounts for about 20% of all skin cancers, the most common type of malignancy in the United States. Genome-wide association studies (GWAS) have successfully identified multiple genetic variants associated with the risk of cSCC. Most of these studies were single-locus-based, testing genetic variants one-at-a-time. In this article, we performed gene-based association tests to evaluate the joint effect of multiple variants, especially rare variants, on the risk of cSCC by using a fast sequence kernel association test (fastSKAT). The study included 1,710 cSCC cases and 24,304 cancer-free controls from the Nurses’ Health Study, the Nurses’ Health Study II and the Health Professionals Follow-up Study. We used UCSC Genome Browser to define gene units as candidate loci, and further evaluated the association between all variants within each gene unit and disease outcome. Four genes HP1BP3, DAG1, SEPT7P2, and SLFN12 were identified using Bonferroni adjusted significance level. Our study is complementary to the existing GWASs, and our findings may provide additional insights into the etiology of cSCC. Further studies are needed to validate these findings.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Chao-Yu Guo ◽  
Reng-Hong Wang ◽  
Hsin-Chou Yang

AbstractAfter the genome-wide association studies (GWAS) era, whole-genome sequencing is highly engaged in identifying the association of complex traits with rare variations. A score-based variance-component test has been proposed to identify common and rare genetic variants associated with complex traits while quickly adjusting for covariates. Such kernel score statistic allows for familial dependencies and adjusts for random confounding effects. However, the etiology of complex traits may involve the effects of genetic and environmental factors and the complex interactions between genes and the environment. Therefore, in this research, a novel method is proposed to detect gene and gene-environment interactions in a complex family-based association study with various correlated structures. We also developed an R function for the Fast Gene-Environment Sequence Kernel Association Test (FGE-SKAT), which is freely available as supplementary material for easy GWAS implementation to unveil such family-based joint effects. Simulation studies confirmed the validity of the new strategy and the superior statistical power. The FGE-SKAT was applied to the whole genome sequence data provided by Genetic Analysis Workshop 18 (GAW18) and discovered concordant and discordant regions compared to the methods without considering gene by environment interactions.


2020 ◽  
Vol 44 (4) ◽  
pp. 352-367 ◽  
Author(s):  
Daniel C. Posner ◽  
Honghuang Lin ◽  
James B. Meigs ◽  
Eric D. Kolaczyk ◽  
Josée Dupuis

2019 ◽  
Vol 116 (31) ◽  
pp. 15616-15624 ◽  
Author(s):  
Vinicius M. Fava ◽  
Yong Zhong Xu ◽  
Guillaume Lettre ◽  
Nguyen Van Thuc ◽  
Marianna Orlova ◽  
...  

Type-1 reactions (T1R) are pathological inflammatory episodes and main contributors to nerve damage in leprosy. Here, we evaluate the genewise enrichment of rare protein-altering variants in 7 genes where common variants were previously associated with T1R. We selected 474 Vietnamese leprosy patients of which 237 were T1R-affected and 237 were T1R-free matched controls. Genewise enrichment of nonsynonymous variants was tested with both kernel-based (sequence kernel association test [SKAT]) and burden methods. Of the 7 genes tested 2 showed statistical evidence of association with T1R. For the LRRK2 gene an enrichment of nonsynonymous variants was observed in T1R-free controls (PSKAT-O = 1.6 × 10−4). This genewise association was driven almost entirely by the gain-of-function variant R1628P (P = 0.004; odds ratio = 0.29). The second genewise association was found for the Parkin coding gene PRKN (formerly PARK2) where 7 rare variants were enriched in T1R-affected cases (PSKAT-O = 7.4 × 10−5). Mutations in both PRKN and LRRK2 are known causes of Parkinson’s disease (PD). Hence, we evaluated to what extent such rare amino acid changes observed in T1R are shared with PD. We observed that amino acids in Parkin targeted by nonsynonymous T1R-risk mutations were also enriched for mutations implicated in PD (P = 1.5 × 10−4). Hence, neuroinflammation in PD and peripheral nerve damage due to inflammation in T1R share overlapping genetic control of pathogenicity.


2018 ◽  
Author(s):  
Xingjie Hao ◽  
Ping Zeng ◽  
Shujun Zhang ◽  
Xiang Zhou

AbstractGenome-wide association studies (GWASs) have identified many disease associated loci, the majority of which have unknown biological functions. Understanding the mechanism underlying trait associations requires identifying trait-relevant tissues and investigating associations in a trait-specific fashion. Here, we extend the widely used linear mixed model to incorporate multiple SNP functional annotations from omics studies with GWAS summary statistics to facilitate the identification of trait-relevant tissues, with which to further construct powerful association tests. Specifically, we rely on a generalized estimating equation based algorithm for parameter inference, a mixture modeling framework for trait-tissue relevance classification, and a weighted sequence kernel association test constructed based on the identified trait-relevant tissues for powerful association analysis. We refer to our analytic procedure as the Scalable Multiple Annotation integration for trait-Relevant Tissue identification and usage (SMART). With extensive simulations, we show how our method can make use of multiple complementary annotations to improve the accuracy for identifying trait-relevant tissues. In addition, our procedure allows us to make use of the inferred trait-relevant tissues, for the first time, to construct more powerful SNP set tests. We apply our method for an in-depth analysis of 43 traits from 28 GWASs using tissue-specific annotations in 105 tissues derived from ENCODE and Roadmap. Our results reveal new trait-tissue relevance, pinpoint important annotations that are informative of trait-tissue relationship, and illustrate how we can use the inferred trait-relevant tissues to construct more powerful association tests in the Wellcome trust case control consortium study.Author SummaryIdentifying trait-relevant tissues is an important step towards understanding disease etiology. Computational methods have been recently developed to integrate SNP functional annotations generated from omics studies to genome-wide association studies (GWASs) to infer trait-relevant tissues. However, two important questions remain to be answered. First, with the increasing number and types of functional annotations nowadays, how do we integrate multiple annotations jointly into GWASs in a trait-specific fashion to take advantage of the complementary information contained in these annotations to optimize the performance of trait-relevant tissue inference? Second, what to do with the inferred trait-relevant tissues? Here, we develop a new statistical method and software to make progress on both fronts. For the first question, we extend the commonly used linear mixed model, with new algorithms and inference strategies, to incorporate multiple annotations in a trait-specific fashion to improve trait-relevant tissue inference accuracy. For the second question, we rely on the close relationship between our proposed method and the widely-used sequence kernel association test, and use the inferred trait-relevant tissues, for the first time, to construct more powerful association tests. We illustrate the benefits of our method through extensive simulations and applications to a wide range of real data sets.


PLoS Genetics ◽  
2016 ◽  
Vol 12 (8) ◽  
pp. e1006235 ◽  
Author(s):  
Tiffany A. Timbers ◽  
Stephanie J. Garland ◽  
Swetha Mohan ◽  
Stephane Flibotte ◽  
Mark Edgley ◽  
...  

2016 ◽  
Vol 40 (2) ◽  
pp. 91-100 ◽  
Author(s):  
Baolin Wu ◽  
James S. Pankow

2015 ◽  
Author(s):  
Tiffany A. Timbers ◽  
Stephanie J. Garland ◽  
Swetha Mohan ◽  
Stephane Flibotte ◽  
Mark Edgley ◽  
...  

AbstractForward genetic screens represent powerful, unbiased approaches to uncover novel components in any biological process. Such screens suffer from a major bottleneck, however, namely the cloning of corresponding genes causing the phenotypic variation. Reverse genetic screens have been employed as a way to circumvent this issue, but can often be limited in scope. Here we demonstrate an innovative approach to gene discovery. Using C. elegans as a model system, we used a whole-genome sequenced multi-mutation library, from the Million Mutation Project, together with the Sequence Kernel Association Test (SKAT), to rapidly screen for and identify genes associated with a phenotype of interest, namely defects in dye-filling of ciliated sensory neurons. Such anomalies in dye-filling are often associated with the disruption of cilia, organelles which in humans are implicated in sensory physiology (including vision, smell and hearing), development and disease. Beyond identifying several well characterised dye-filling genes, our approach uncovered three genes not previously linked to ciliated sensory neuron development or function. From these putative novel dye-filling genes, we confirmed the involvement of BGNT–1.1 in ciliated sensory neuron function and morphogenesis. BGNT–1.1 functions at the trans-Golgi network of sheath cells (glia) to influence dye-filling and cilium length, in a cell non-autonomous manner. Notably, BGNT–1.1 is the orthologue of human B3GNT1/B4GAT1, a glycosyltransferase associated with Walker-Warburg syndrome (WWS). WWS is a multigenic disorder characterised by muscular dystrophy as well as brain and eye anomalies. Together, our work unveils an effective and innovative approach to gene discovery, and provides the first evidence that B3GNT1-associated Walker-Warburg syndrome may be considered a ciliopathy.Author SummaryModel organisms are useful tools for uncovering new genes involved in a biological process via genetic screens. Such an approach is powerful, but suffers from drawbacks that can slow down gene discovery. In forward genetics screens, difficult-to-map phenotypes present daunting challenges, and whole-genome coverage can be equally challenging for reverse genetic screens where typically only a single gene’s function is assayed per strain. Here, we show a different approach which includes positive aspects of forward (high-coverage, randomly-induced mutations) and reverse genetics (prior knowledge of gene disruption) to accelerate gene discovery. We paired a whole-genome sequenced multi-mutation C. elegans library with a rare-variant associated test to rapidly identify genes associated with a phenotype of interest: defects in sensory neurons bearing sensory organelles called cilia, via a simple dye-filling assay to probe the form and function of these cells. We found two well characterised dye-filling genes and three genes, not previously linked to ciliated sensory neuron development or function, that were associated with dye-filling defects. We reveal that disruption of one of these (BGNT–1.1), whose human orthologue is associated with Walker-Warburg syndrome, results in abrogated uptake of dye and cilia length defects. We believe that our novel approach is useful for any organism with a small genome that can be quickly sequenced and where many mutant strains can be easily isolated and phenotyped, such as Drosophila and Arabidopsis.


Sign in / Sign up

Export Citation Format

Share Document