scholarly journals Comparison of Mating Designs for Establishing Nested Association Mapping Populations in Maize andArabidopsis thaliana

Genetics ◽  
2009 ◽  
Vol 183 (4) ◽  
pp. 1525-1534 ◽  
Author(s):  
Benjamin Stich
2011 ◽  
Vol 124 (2) ◽  
pp. 261-275 ◽  
Author(s):  
Zhigang Guo ◽  
Dominic M. Tucker ◽  
Jianwei Lu ◽  
Venkata Kishore ◽  
Gilles Gay

BMC Genomics ◽  
2016 ◽  
Vol 17 (1) ◽  
Author(s):  
Chunhui Li ◽  
Baocheng Sun ◽  
Yongxiang Li ◽  
Cheng Liu ◽  
Xun Wu ◽  
...  

2013 ◽  
Vol 3 (2) ◽  
pp. 263-272 ◽  
Author(s):  
Zhigang Guo ◽  
Dominic M. Tucker ◽  
Daolong Wang ◽  
Christopher J. Basten ◽  
Elhan Ersoz ◽  
...  

Plants ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 10
Author(s):  
Sebastian Zahn ◽  
Thomas Schmutzer ◽  
Klaus Pillen ◽  
Andreas Maurer

Straw biomass and stability are crucial for stable yields. Moreover, straw harbors the potential to serve as a valuable raw material for bio-economic processes. The peduncle is the top part of the last shoot internode and carries the spike. This study investigates the genetic control of barley peduncle morphology. Therefore, 1411 BC1S3 lines of the nested association mapping (NAM) population “Halle Exotic Barley 25” (HEB-25), generated by crossing the spring barley elite cultivar Barke with an assortment of 25 exotic barley accessions, were used. Applying 50k Illumina Infinium iSelect SNP genotyping yielded new insights and a better understanding of the quantitative trait loci (QTL) involved in controlling the peduncle diameter traits, we found the total thickness of peduncle tissues and the area of the peduncle cross-section. We identified three major QTL regions on chromosomes 2H and 3H mainly impacting the traits. Remarkably, the exotic allele at the QTL on chromosome 3H improved all three traits investigated in this work. Introgressing this QTL in elite cultivars might facilitate to adjust peduncle morphology for improved plant stability or enlarged straw biomass production independent of flowering time and without detrimental effects on grain yield.


PLoS ONE ◽  
2016 ◽  
Vol 11 (10) ◽  
pp. e0163739 ◽  
Author(s):  
Luciano Rogério Braatz de Andrade ◽  
Roberto Fritsche Neto ◽  
Ítalo Stefanine Correia Granato ◽  
Gustavo César Sant’Ana ◽  
Pedro Patric Pinho Morais ◽  
...  

2016 ◽  
Vol 64 (10) ◽  
pp. 2162-2172 ◽  
Author(s):  
Tyamagondlu V. Venkatesh ◽  
Alexander W. Chassy ◽  
Oliver Fiehn ◽  
Sherry Flint-Garcia ◽  
Qin Zeng ◽  
...  

1970 ◽  
Vol 2 (1) ◽  
pp. 72-89
Author(s):  
Umesh R Rosyara ◽  
Bal K Joshi

DNA-based molecular markers have been extensively utilized for mapping of genes and quantitative trait loci (QTL) of interest based on linkage analysis in mapping populations. This is in contrast to human genetics that use of linkage disequilibrium (LD)-based mapping for fine mapping of QTLs using single nucleotide polymorphisms. LD based association mapping (AM) has promise to be used in plants. Possible use of such approach may be for fine mapping of genes / QTLs, identifying favorable alleles for marker aided selection and cross validation of results from linkage mapping for precise location of genes / QTLs of interest. In the present review, we discuss different mapping populations, approaches, prospects and limitations of using association mapping in plant breeding populations. This is expected to create awareness in plant breeders in use of AM in crop improvement activities.Key words: Association mapping; plant breeding; DNA marker; quantitative trait lociDOI: http://dx.doi.org/10.3126/njb.v2i1.5686  Nepal Journal of Biotechnology Jan.2012, Vol.2(1): 72-89


2020 ◽  
Vol 2020 ◽  
pp. 1-13 ◽  
Author(s):  
Jordan Ubbens ◽  
Mikolaj Cieslak ◽  
Przemyslaw Prusinkiewicz ◽  
Isobel Parkin ◽  
Jana Ebersbach ◽  
...  

Association mapping studies have enabled researchers to identify candidate loci for many important environmental tolerance factors, including agronomically relevant tolerance traits in plants. However, traditional genome-by-environment studies such as these require a phenotyping pipeline which is capable of accurately measuring stress responses, typically in an automated high-throughput context using image processing. In this work, we present Latent Space Phenotyping (LSP), a novel phenotyping method which is able to automatically detect and quantify response-to-treatment directly from images. We demonstrate example applications using data from an interspecific cross of the model C4 grass Setaria, a diversity panel of sorghum (S. bicolor), and the founder panel for a nested association mapping population of canola (Brassica napus L.). Using two synthetically generated image datasets, we then show that LSP is able to successfully recover the simulated QTL in both simple and complex synthetic imagery. We propose LSP as an alternative to traditional image analysis methods for phenotyping, enabling the phenotyping of arbitrary and potentially complex response traits without the need for engineering-complicated image-processing pipelines.


Sign in / Sign up

Export Citation Format

Share Document