scholarly journals THE EFFECT OF TEMPERATURE AND EXTRACTION TECHNIQUE ON THE BINDING INTERACTIONS AND HYDROLYSIS OF β-LACTOGLOBULIN WITH MILK FAT GLOBULE MEMBRANE (MFGM)

2014 ◽  
Author(s):  
Corbin R. Kembel
1984 ◽  
Vol 51 (2) ◽  
pp. 279-287 ◽  
Author(s):  
Avis V. McPherson ◽  
Mary C. Dash ◽  
Barry J. Kitchen

SummaryMilk fat globule membrane (MFGM) material was isolated from commercial pasteurized milks and pasteurized creams using a procedure specifically adapted for these products (McPhersonet al.1984a). Pasteurized cream membranes contained higher lipid levels while pasteurized milk membrane material had lower lipid contents than fresh raw MFGM. Electrophoretic analysis showed that membrane material from both commercial products contained, in addition to native MFGM polypeptides, significant amounts of β-lactoglobulin with lower levels of caseins and other skim-milk components. The incorporation of β-lactoglobulin was more pronounced in pasteurized cream membranes. Examination of the lipoprotein complexes present in these membrane preparations by linear sucrose density gradient centrifugation showed that pasteurized milk membrane material had a similar profile to fresh raw MFGM except that preferential binding of skim-milk components was found in some of the lipoprotein fractions. Pasteurized cream membranes showed considerably different density gradient patterns with only 2 lipoprotein fractions present, of which the major one was a low density complex.


Dairy ◽  
2021 ◽  
Vol 2 (2) ◽  
pp. 202-217
Author(s):  
Michele Manoni ◽  
Donata Cattaneo ◽  
Sharon Mazzoleni ◽  
Carlotta Giromini ◽  
Antonella Baldi ◽  
...  

Milk lipids are composed of milk fat globules (MFGs) surrounded by the milk fat globule membrane (MFGM). MFGM protects MFGs from coalescence and enzymatic degradation. The milk lipid fraction is a “natural solvent” for macronutrients such as phospholipids, proteins and cholesterol, and micronutrients such as minerals and vitamins. The research focused largely on the polar lipids of MFGM, given their wide bioactive properties. In this review we discussed (i) the composition of MFGM proteome and its variations among species and phases of lactation and (ii) the micronutrient content of human and cow’s milk lipid fraction. The major MFGM proteins are shared among species, but the molecular function and protein expression of MFGM proteins vary among species and phases of lactation. The main minerals in the milk lipid fraction are iron, zinc, copper and calcium, whereas the major vitamins are vitamin A, β-carotene, riboflavin and α-tocopherol. The update and the combination of this knowledge could lead to the exploitation of the MFGM proteome and the milk lipid fraction at nutritional, biological or technological levels. An example is the design of innovative and value-added products, such as MFGM-supplemented infant formulas.


2021 ◽  
pp. 106378
Author(s):  
Iolly Tábata Oliveira Marques ◽  
Fábio Roger Vasconcelos ◽  
Juliana Paula Martins Alves ◽  
Assis Rubens Montenegro ◽  
César Carneiro Linhares Fernandes ◽  
...  

1994 ◽  
Vol 1199 (1) ◽  
pp. 87-95 ◽  
Author(s):  
Naohito Aoki ◽  
Hidenori Kuroda ◽  
Miho Urabe ◽  
Yoshimi Taniguchi ◽  
Takahiro Adachi ◽  
...  

2002 ◽  
Vol 69 (4) ◽  
pp. 555-567 ◽  
Author(s):  
SUNG JE LEE ◽  
JOHN W. SHERBON

The effects of heat treatment and homogenization of whole milk on chemical changes in the milk fat globule membrane (MFGM) were investigated. Heating at 80 °C for 3–18 min caused an incorporation of whey proteins, especially β-lactoglobulin (β-lg), into MFGM, thus increasing the protein content of the membrane and decreasing the lipid. SDS-PAGE showed that membrane glycoproteins, such as PAS-6 and PAS-7, had disappeared or were weakly stained in the gel due to heating of the milk. Heating also decreased free sulphydryl (SH) groups in the MFGM and increased disulphide (SS) groups, suggesting that incorporation of β-lg might be due to association with membrane proteins via disulphide bonds. In contrast, homogenization caused an adsorption of caseins to the MFGM but no binding of whey proteins to the MFGM without heating. Binding of caseins and whey proteins and loss of membrane proteins were not significantly different between milk samples that were homogenized before and after heating. Viscosity of whole milk was increased when milk was treated with both homogenization and heating.


Sign in / Sign up

Export Citation Format

Share Document