Pore Structure Characteristics and Reactivity of Coal Semicokes

2021 ◽  
Vol 201 ◽  
pp. 105579
Author(s):  
Lingbo Zhou ◽  
Xiaojun Wang ◽  
Chengguang Huang ◽  
Hao Wang ◽  
Huachang Ye ◽  
...  

2012 ◽  
Vol 591-593 ◽  
pp. 850-853
Author(s):  
Huai Xing Wen ◽  
Yong Tao Yang

Drawing Dies meter A / D acquisition module will be collected from the mold hole contour data to draw a curve in Matlab. According to the mold pore structure characteristics of the curve, the initial cut-off point of each part of contour is determined and iteratived optimization to find the best cut-off point, use the least squares method for fitting piecewise linear and fitting optimization to find the function of the various parts of the curve function, finally calculate the pass parameters of drawing mode. Parameters obtained compare with the standard mold, both of errors are relatively small that prove the correctness of the algorithm. Also a complete algorithm flow of pass parameters is designed, it can fast and accurately measure the wire drawing die hole parameters.


2021 ◽  
Vol 221 ◽  
pp. 106923
Author(s):  
Hao Zhou ◽  
Jiawei Luo ◽  
Zhaowen Wang ◽  
Mengting Ji ◽  
Mingrui Zhang

2012 ◽  
Vol 174-177 ◽  
pp. 1010-1014 ◽  
Author(s):  
Hong Bin Liu ◽  
Yang Ju ◽  
Kai Pei Tian ◽  
Jin Hui Liu ◽  
Li Wang ◽  
...  

The pore structure characteristics of reactive powder concrete (RPC) were investigated by means of the mercury injection method at seven temperature levels, namely, 20°C, 100°C, 150°C, 200°C, 250°C, 300°C, 350°C, respectively. The characteristic parameters such as porosity, pore volume, average pore size and threshold aperture varied with temperatures were analyzed. The results indicate that the porosity, pore volume, threshold aperture and other characteristic parameters of RPC increased with the temperature increasing.


2018 ◽  
Author(s):  
Dong Feng ◽  
Xingfang Li ◽  
Chaojie Zhao ◽  
Jing Li ◽  
Qing Liu ◽  
...  

Materials ◽  
2019 ◽  
Vol 12 (15) ◽  
pp. 2371 ◽  
Author(s):  
Xinyu Hu ◽  
Yihong Guo ◽  
Jianfu Lv ◽  
Jize Mao

This paper aims to investigate the effect of the polypropylene fibre (PP) and basalt fibre (BF), singly or in hybridization, on the workability, mechanical, chloride resistance and pore structure characteristics of concrete. Sixteen mixtures consisting of PP and BF, both at volume content of 0.0, 0.1, 0.2 and 0.3%, were fabricated, and the slump, compressive, splitting tensile, flexural and charge passed were tested. The results show the hybridization of the PP and BF can improve three types of strength of concrete in comparison to their single fibre. Nevertheless, the hybridization is not always conducive, and the synergy of fibres is proposed and divided into positive and negative effects. The combination of the PP and BF both at content of 0.1% achieves the best mechanical performance, and is recommended for practical usage. Incorporating fibres reduces the chloride resistance of concrete, and the hybridization is helpless to this phenomenon; even the reduction is intensified at a highly hybrid fibre volume. However, increasing the curing age can mitigate this adverse effect caused by fibres. Furthermore, the microstructures were explored to elucidate the macro-properties of concrete in terms of interface and pore structure.


Sign in / Sign up

Export Citation Format

Share Document