scholarly journals Comparison of cyclic voltammetry measurements of paper-based screen printed electrodes via proprietary and open source potentiostat

BioResources ◽  
2021 ◽  
Vol 16 (2) ◽  
pp. 3916-3933
Author(s):  
Igor Karlovits ◽  
Urška Kavčič ◽  
Špela Trafela ◽  
Kristina Žužek Rožman

The use of screen-printed electrodes in different monitoring applications, e.g., polluted water, biotechnology, agriculture, industrial process control, and other applications, are continuously being developed. New cheap and open-source potentiostats have been recently emerging, in addition to the commercial and proprietary solutions on the market. In this study, paper-based, screen-printed electrodes were utilised as an alternative solution for ceramic-based electrodes and were tested with two potentiostats (proprietary and low-cost open-source running on wireless 64 bit Linux system installed on Raspberry Pi 3+). Unique paper substrates made from invasive plant papers and one commercial product were used for screen electrode printing. Ink layer thicknesses variations and mechanical grinding were applied, and cyclic voltammetry measurements were conducted. The variation in cyclic voltammetry measurements could be attributed to two sources: the potentiostats showed differences in their sensibility and signal values, and paper surface and structure also contributed to differences. Simultaneously, the additional processing steps, e.g., mechanical grinding, introduced additional measurement variations and differences in the measurement process.

2020 ◽  
Vol 35 (2) ◽  
pp. 299-307 ◽  
Author(s):  
Urška Kavčič ◽  
Igor Karlovits

AbstractUsing disposable screen-printed electrodes is a convenient way of monitoring environmental pollution, production process control etc. Usually, commercially available screen-printed electrodes are used, but more and more studies are being carried out in the field of printing electrodes on thinner, low-cost and versatile substrates, including paper. In the present research, the comparison of screen-printed electrodes printed on different paper-based materials is presented. Two unique and innovative invasive plant-based papers made from (1) Japanese knotweed, (2) Canadian and Giant goldenrod and (3) commercially available cardboard were used as a printing material for the electrodes. The selected paper substrates were characterized, and screen-printed electrodes were printed. The influence of substrates’ properties and pre- or post-treatment of the screen-printed electrodes on the electrochemical behaviour is thoroughly analyzed. The results indicate that the printing substrate (roughness) had the most significant influence on the cyclic voltammetry response. Comparing pre- and post-treatment of screen-printed electrodes, it was shown that grinding influenced the electrochemical activity significantly, while corona discharge does not have as significant influence. Besides, it was shown that the invasive plant-based papers are viable alternatives to commercially available papers and can be used as low-cost and eco-friendly alternatives for disposable screen-printed electrodes.


Electronics ◽  
2018 ◽  
Vol 7 (12) ◽  
pp. 404 ◽  
Author(s):  
Daniel Costa ◽  
Cristian Duran-Faundez

With the increasing availability of affordable open-source embedded hardware platforms, the development of low-cost programmable devices for uncountable tasks has accelerated in recent years. In this sense, the large development community that is being created around popular platforms is also contributing to the construction of Internet of Things applications, which can ultimately support the maturation of the smart-cities era. Popular platforms such as Raspberry Pi, BeagleBoard and Arduino come as single-board open-source platforms that have enough computational power for different types of smart-city applications, while keeping affordable prices and encompassing many programming libraries and useful hardware extensions. As a result, smart-city solutions based on such platforms are becoming common and the surveying of recent research in this area can support a better understanding of this scenario, as presented in this article. Moreover, discussions about the continuous developments in these platforms can also indicate promising perspectives when using these boards as key elements to build smart cities.


Biosensors ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 32 ◽  
Author(s):  
Beatriz Pérez-Fernández ◽  
Agustín Costa-García ◽  
Alfredo de la Escosura- Muñiz

Pesticides are among the most important contaminants in food, leading to important global health problems. While conventional techniques such as high-performance liquid chromatography (HPLC) and mass spectrometry (MS) have traditionally been utilized for the detection of such food contaminants, they are relatively expensive, time-consuming and labor intensive, limiting their use for point-of-care (POC) applications. Electrochemical (bio)sensors are emerging devices meeting such expectations, since they represent reliable, simple, cheap, portable, selective and easy to use analytical tools that can be used outside the laboratories by non-specialized personnel. Screen-printed electrodes (SPEs) stand out from the variety of transducers used in electrochemical (bio)sensing because of their small size, high integration, low cost and ability to measure in few microliters of sample. In this context, in this review article, we summarize and discuss about the use of SPEs as analytical tools in the development of (bio)sensors for pesticides of interest for food control. Finally, aspects related to the analytical performance of the developed (bio)sensors together with prospects for future improvements are discussed.


Molecules ◽  
2020 ◽  
Vol 25 (17) ◽  
pp. 3884
Author(s):  
Loanda R. Cumba ◽  
Adalberto Camisasca ◽  
Silvia Giordani ◽  
Robert J. Forster

The properties of carbon nano-onions (CNOs) make them attractive electrode materials/additives for the development of low-cost, simple to use and highly sensitive Screen Printed Electrodes (SPEs). Here, we report the development of the first CNO-based ink for the fabrication of low-cost and disposable electrodes, leading to high-performance sensors. Achieving a true dispersion of CNOs is intrinsically challenging and a key aspect of the ink formulation. The screen-printing ink formulation is achieved by carefully selecting and optimising the conductive materials (graphite (GRT) and CNOs), the polymer binder, the organic solvent and the plasticiser. Our CNO/GRT-based screen-printed electrodes consist of an interconnected network of conducting carbon particles with a uniform distribution. Electrochemical studies show a heterogeneous electron transfer rate constant of 1.3 ± 0.7 × 10−3 cm·s−1 and a higher current density than the ferrocene/ferrocenium coupled to a commercial graphite SPEs. In addition, the CNO/GRT SPE can detect dopamine in the concentration range of 10.0–99.9 µM with a limit of detection of 0.92 µM (N = 3). They exhibit a higher analytical sensitivity than the commercial graphite-based SPE, with a 4-fold improvement observed. These results open up the possibility of using high-performing CNO-based SPEs for electrochemical applications including sensors, battery electrodes and electrocatalysis.


Author(s):  
Chaitra Hegde ◽  
Zifan Jiang ◽  
Pradyumna Byappanahalli Suresha ◽  
Jacob Zelko ◽  
Salman Seyedi ◽  
...  

AbstractWith the recent COVID-19 pandemic, healthcare systems all over the world are struggling to manage the massive increase in emergency department (ED) visits. This has put an enormous demand on medical professionals. Increased wait times in the ED increases the risk of infection transmission. In this work we present an open-source, low cost, off-body system to assist in the automatic triage of patients in the ED based on widely available hardware. The system initially focuses on two symptoms of the infection fever and cyanosis. The use of visible and far-infrared cameras allows for rapid assessment at a 1m distance, thus reducing the load on medical staff and lowering the risk of spreading the infection within hospitals. Its utility can be extended to a general clinical setting in non-emergency times as well to reduce wait time, channel the time and effort of healthcare professionals to more critical tasks and also prioritize severe cases.Our system consists of a Raspberry Pi 4, a Google Coral USB accelerator, a Raspberry Pi Camera v2 and a FLIR Lepton 3.5 Radiometry Long-Wave Infrared Camera with an associated IO module. Algorithms running in real-time detect the presence and body parts of individual(s) in view, and segments out the forehead and lip regions using PoseNet. The temperature of the forehead-eye area is estimated from the infrared camera image and cyanosis is assessed from the image of the lips in the visible spectrum. In our preliminary experiments, an accuracy of 97% was achieved for detecting fever and 77% for the detection of cyanosis, with a sensitivity of 91% and area under the receiver operating characteristic curve of 0.91. Heart rate and respiratory effort are also estimated from the visible camera.Although preliminary results are promising, we note that the entire system needs to be optimized before use and assessed for efficacy. The use of low-cost instrumentation will not produce temperature readings and identification of cyanosis that is acceptable in many situations. For this reason, we are releasing the full code stack and system design to allow others to rapidly iterate and improve the system. This may be of particular benefit in low-resource settings, and low-to-middle income countries in particular, which are just beginning to be affected by COVID-19.


Sensors ◽  
2021 ◽  
Vol 21 (17) ◽  
pp. 5812
Author(s):  
Andres Henao ◽  
Philippe Apparicio ◽  
David Maignan

During the last decade, bicycles equipped with sensors became an essential tool for research, particularly for studies analyzing the lateral passing distance between motorized vehicles and bicycles. The objective of this article is to describe a low-cost open-source sensor called one metre plus (1m+) capable of measuring lateral passing distance, registering the geographical position of the cyclist, and video-recording the trip. The plans, codes, and schematic design are open and therefore easily accessible for the scientific community. This study describes in detail the conceptualization process, the characteristics of the device, and the materials from which they are made. The study also provides an evaluation of the product and describes the sensor’s functionalities and its field of application. The objective of this project is to democratize research and develop a platform/participative project that offers tools to researchers worldwide, in order to standardize knowledge sharing and facilitate the comparability of results in various contexts.


Sign in / Sign up

Export Citation Format

Share Document