scholarly journals Influence of moisture content on physical and mechanical properties of Cedrelinga catenaeformis wood

BioResources ◽  
2021 ◽  
Vol 16 (4) ◽  
pp. 6758-6765
Author(s):  
Larissa Soriani Zanini Ribeiro Soares ◽  
Iuri Fazolin Fraga ◽  
Lucimar de Souza e Paula ◽  
Felipe Nascimento Arroyo ◽  
Heloiza Candeia Ruthes ◽  
...  

This study aimed to investigate the influence of moisture content variation on 12 mechanical properties of the Cedrelinga catenaeformis species. Of the 12 properties, four were significantly affected (based on analysis of variance at 5% significance level), and the compression and shear strengths in the direction parallel to the fibers exhibited the greatest difference in values from the saturated moisture condition of up to 12% (approximately 34% increase). Toughness exhibited a behavior different from that predicted by the normative equation, in which increase in moisture content implied increase (approximately 59%) of the property studied. Because a good part of the properties was not significantly affected and Brazilian standard ABNT NBR 7190 (1997) considers expressions that lead to a considerable increase in mechanical properties with the reduction of moisture content, this approach was unfavorable to the safety of the project, motivating the development of other studies to collaborate in revisions of this normative document.

2014 ◽  
Vol 1025-1026 ◽  
pp. 42-45 ◽  
Author(s):  
Luiz A. Melgaço N. Branco ◽  
Eduardo Chahud ◽  
André Luis Christoforo ◽  
Francisco Antonio Rocco Lahr ◽  
Rosane A.G. Battistelle ◽  
...  

This study aimed, with the aid of analysis of variance (ANOVA), to investigate and quantify the influence of moisture ranging between 12% and over 30% (fiber saturation) on the mechanical properties: strength and modulus of elasticity in compression and in tension parallel to grain; modulus of rupture and modulus of elasticity in static bending; shear strength parallel to grain considering wood species Ipê (Tabebuia sp) and Angelim Araroba (Vataireopsis araroba). Tests were performed according to the assumptions and calculating methods Brazilian standard ABNT NBR 7190, Anexx B, totalizing 400 tests. Results of ANOVA revealed a significant reduction (16% on average) for mechanical properties wood due to the increase in moisture content from 12% to over 30% (fiber saturation). The same behavior also occurred when assembly containing the two species was considered.


2019 ◽  
Vol 7 (2) ◽  
Author(s):  
Dendi Prayoga ◽  
. Dirhamsyah ◽  
. Nurhaida

This research aimed to examine the physical and mechanical properties of particle boards based on the composition of raw materials and adhesive content and know the treatment of the composition of raw materials and the best adhesive content and meet the standard JIS A 5908-2003. The research was conducted at Wood Workshop Laboratory, Wood Processing Laboratory Faculty of Forestry,Tanjungpura University and Laboratory of PT. Duta Pertiwi Nusantara Pontianak. The adhesive used is Urea Formaldehyde with 52% Solid Content. Comparison of the composition of rice husks and sengon varies namely rice husk 50%: sengon 50%, rice husk 60%: sengon 40% and rice husk 70%: sengon 30%  and variations in the levels of UF adhesives, namely 14% and 16%, with target density 0,7 gr/cm3. The particleboard was 30 cm x 30 cm x 1 cm Pressing at temperature 140oC for 8 minutes, with  pressure of 25 kg/cm2. The research results of the study of density and moisture content meet the standards JIS A 5908-2003. The best particle values of rice husk and sengon  with composition a ratio of  rice husk 50%: sengon 50% , 16% adhesive content  16%, with density value of  0,7072 gr/cm3, moisture content 9,1949 %, thick development 12,3210 %, water absorption 68,8270 %, MOE 12110,7273 kg/cm2, MOR 161,0025 kg/cm2, firmness sticky 1,9320 kg/cm2, screw holding strength 62,3124 kg.Keywords : adhesive, composition, particle board, rice husk, sengon


2019 ◽  
Vol 7 (1) ◽  
Author(s):  
. Erma ◽  
Fadiilah H Usman ◽  
. Muflihati

Physical and mechanical properties of wood is one of the basic properties that need to be known in the selection of wood, because the physical and mechanical properties of wood are not the same height on the stem. Increased wood demand gives the opportunity to use wood that is not yet known for its marketing, one of which is Salam wood (Syzygium polianthum (Wight) Walp). The purpose of this research was to determine the physical and mechanical properties of Salam wood based on the height of the stem so that Salam wood can be optimally utilized by testing based on Classification SNI – 5 PKKI 1961. Methods of making test and test examples based on British Standard Methods No. 373-1957. The results showed that Salam wood has physical properties with an average  brown colour, the moisture content 3,13 % , density  0,58 kg/cm2 , Depreciation 2,59 %. Salam has mechanical properties with an average height position stem from base to tip with Modulus of Elastiscity (MOE)  97.701,54 , Modulus of Rupture (MOR) 659,18  and  Modulus Crushing  Streang 342,86 . Salam can be classified into strong class III and based on its properties and mechanics, it is suitable for use as a lightweight construction and furniture.Keywords: Density, depreciation, MCS, MOE, moisture content, MOR


2018 ◽  
Vol 7 (1) ◽  
Author(s):  
Mayang Archila ◽  
Farah Diba ◽  
Dina Setyawati ◽  
. Nurhaida

The objective of this research is to evaluate the effect of the number of composite layers on the quality of the composite board from sago bark waste and plastic waste, and the number of composite layers that produce the best quality on composite board. The composite board is made with size 30 cm x 30 cm x 1 cm. The composition and division of the material was carried out manually with the polypropylene distribution divided into three parts: the front and rear respectively of 15%, and the center 70% of the plastic weight. Target density of composite boards was 0.7 g / cm3. The treatment used is based on the number of layers composing, which is 5 layers, 7 layers, 9 layers, 11 layers and 13 layers. After mixed the sago bark particle and waste of polypropylene, the materials then compressed with hot press at 180oC with pressure about ± 25 kg / cm2 for 10 minutes. The composite boards then tested the quality included physical and mechanical properties. Testing of physical and mechanical properties refers to JIS A 5908-2003 standard. Physical properties consist of density, moisture content, thickness swelling, and water absorption. Mechanical properties consist of modulus of rupture, modulus of elasticity, internal bonding, and modulus of screw holding strength. The study used a completely randomized design experiment consisting of 5 treatments and 3 replications. The results showed the average value of composite density was range between 0.6962 – 0.7896 g/cm3, the moisture content was range between 4.3388 % - 6.8066%, the thickness swelling was range between 8.2605% - 11.9615%, and water absorption was range between 17.2380% - 22.3867%. The average value of modulus of rupture was range between 60,0632 kg/cm2 – 64,4068 kg/cm2, the modulus of elasticity was range between 17935,1813g/cm2 – 32841,8278 kg/cm2, the internal bonding was range between 1,9268 kg/cm2  - 5,4119 kg/cm2, and the modulus of screw holding strength was range between 78,2530 kg/cm2 – 92,9677 kg/cm2. The composite board made from sago stem bark waste and polypropylene waste plastic with 13 layers treatment is the best composite board and fulfilled the JIS A 5908-2003 standard. Keywords: bark of sago, composite boards, layer of composite, polypropylenes plastic, waste


2013 ◽  
Vol 2 (6) ◽  
pp. 24
Author(s):  
A. S. Oyerinde ◽  
A. P. Olalusi

<p>The effect of moisture content on some physical and mechanical properties of two varieties of tigernuts (<em>Cyperus esculentus</em>) was investigated. These properties include: geometric dimensions, linear dimensions, 1000 tuber weight, bulk density, tuber size, sphericity, angle of repose, porosity, coefficient of static friction and compressive strength. The moisture content levels used were 20, 25, 30, 35 and 40% wet basis (wb), and the two tigernut varieties used were yellow and brown types. The linear dimension, geometric diameter, sphericity, 1000- tuber weight, bulk density and angle of repose in both varieties increased with increasing moisture content. The average length, width and thickness of the yellow variety increases more than the brown variety at the determined moisture contents. True density of the yellow variety increased while the brown variety decreased with increase in moisture content. The porosity of the yellow variety reduces with increase in moisture content from 45.95 at 20% mc to 42.4 at 40% mc, while the brown variety decreased from 42.72 at 20% mc to 30.77 at 40% moisture content. The yellow variety had bigger size tubers than the brown variety and this has serious implications in packing, handling and transportation issues.</p>


2015 ◽  
Vol 1109 ◽  
pp. 195-199 ◽  
Author(s):  
Abd Aziz Azira ◽  
Dayang Habibah Abangismawi I. Hassim ◽  
D. Verasamy ◽  
Abu Bakar Suriani ◽  
M. Rusop

In order to achieve improvements in the performance of rubber materials, the development of carbon nanotube (CNT)-reinforced rubber composites was attempted. The CNT/epoxidised natural rubber (ENR) nanocomposite was prepared through latex technology. Physical and mechanical properties of the CNT/ENR nanocomposites were characterized in contrast to the carbon black (CB)/ENR composite. The dispersion of the CNTs in the rubber matrix and interfacial bonding between them were rather good; monitored transmission electron microscopy and scanning electron microscopy. The mechanical properties of the CNT-reinforced ENR showed a considerable increase compared to the neat ENR and traditional CB/ENR composite. The storage modulus of the CNT/ENR nanocomposites greatly exceeds that of neat ENR and CB/ENR composites and a maximum conductivity of about 1 S m-1 can be achieved. The approach presented can be adapted to other CNT/polymer latex systems.


2016 ◽  
Vol 12 (1) ◽  
pp. 91-100 ◽  
Author(s):  
Mohammad Hossein Nadian ◽  
Mohammad Hossein Abbaspour-fard

Abstract The effect of moisture content on some properties of two varieties (Meymeh and Maragheh) of Russian olives was studied. The physical and mechanical properties including: dimensions, geometric mean diameter, thousand mass, volume, sphericity, surface area, true and bulk densities, porosity, angle of repose, coefficient of friction, rupture force, and rupture energy. The changes of moisture content levels from 17% to 25% (w.b.) indicated a statistically significant effect on all studied physical properties, except bulk density for Russian olive fruits. Shearing force was applied to the fruit using a testing machine in double shear mode. Shear strength and shearing energy increased with increase of loading rate; however, they were higher in Meymeh variety than Maragheh variety. Therefore, the lowest loading rate, with up to about 10 mm/min is desirable to design a suitable pulverizing mill in the herbal medicine industries.


Sign in / Sign up

Export Citation Format

Share Document