scholarly journals Comparative Analysis of Enzymatic Hydrolysis of Miscanthus Xylan using Aspergillus niger, Hypocrea orientalis, and Trichoderma reesei Xylan-degrading Enzymes

BioResources ◽  
2014 ◽  
Vol 9 (2) ◽  
Author(s):  
Hailong Li ◽  
Jian Liu ◽  
Jinlian Wu ◽  
Yong Xue ◽  
Lihui Gan ◽  
...  
RSC Advances ◽  
2017 ◽  
Vol 7 (89) ◽  
pp. 56239-56246 ◽  
Author(s):  
Chen Zhao ◽  
Lu Deng ◽  
Hao Fang ◽  
Shaolin Chen

Mixed culture ofTrichoderma reeseiandAspergillus nigerwas employed to accomplish on-site cellulase production where cellulases were applied directly to the enzymatic hydrolysis of pretreated corn stover.


Processes ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 1360
Author(s):  
Ekaterina Budenkova ◽  
Stanislav Sukhikh ◽  
Svetlana Ivanova ◽  
Olga Babich ◽  
Vyacheslav Dolganyuk ◽  
...  

Enzymatic hydrolysis of cellulose-containing raw materials, using Aspergillus niger, were studied. Filter paper, secondary cellulose-containing or starch-containing raw materials, miscanthus cellulose after alkaline or acid pretreatment, and wood chip cellulose, were used as substrates. The study focused on a wild A. niger strain, treated, or not (control), by ultraviolet (UV) irradiations for 45, 60, or 120 min (UV45, UV60, or UV120), or by UV irradiation for 120 min followed by a chemical treatment with NaN3 + ItBr for 30 min or 80 min (UV120 + CH30 or UV120 + CH80). A mixture of all the A. niger strains (MIX) was also tested. A citrate buffer, at 50 mM, wasthe most suitable for enzymatic hydrolysis. As the UV exposure time increased to 2 h, the cellulase activity of the surviving culturewas increased (r = 0.706; p < 0.05). The enzymatic activities of the obtained strains, towards miscanthus cellulose, wood chips, and filter paper, were inferior to those obtained with commercial enzymes (8.6 versus 9.1 IU), in some cases. Under stationary hydrolysis at 37 °C, pH = 4.7, the enzymatic activity of A. niger UV120 + CH30 was 24.9 IU. The enzymatic hydrolysis of secondary raw materials, using treated A. niger strains, was themost effective at 37 °C. Similarly, the most effective treatment of miscanthus cellulose and wood chips occurred at 50 °C. The maximum conversion of cellulose to glucose was observed using miscanthus cellulose (with alkaline pretreatment), and the minimum conversion was observed when using wood chips. The greatest value of cellulase activity was evidenced in the starch-containing raw materials, indicating that A. niger can ferment not only through cellulase activity, but also via an amylolytic one.


2013 ◽  
Vol 7 (43) ◽  
pp. 5018-5024 ◽  
Author(s):  
Xiong Lian ◽  
Huang Chao ◽  
Peng Wan feng ◽  
Tang Lv rong ◽  
Yang Xiao yan ◽  
...  

2021 ◽  
Author(s):  
Hui Zhang ◽  
Junhui Wu

Abstract To maximize fermentable sugars production, response surface methodology (RSM) was adopted to optimize pretreatment and enzymatic hydrolysis of wheat straw powder (WSP) using the crude cellulases preparation containing xylanases from Aspergillus niger HQ-1. Factors of pretreatment including sodium hydroxide concentration, pretreatment time and temperature were found to have significant effects on sugars production. Results indicated that WSP with particle size 0.3 mm should be pretreated using 1.8% (w/v) sodium hydroxide solution with 25.0% (w/v) of solid loading at 94.0°C for 46.0 min and the optimized pretreatment conditions could result in 90.9% of cellulose recovery, 54.6% of hemicellulose recovery and 72.7% of lignin removal, respectively. Furthermore, variables of enzymatic hydrolysis including enzyme loading, biomass loading and reaction time were proved to have significant effects on sugars yields. After hydrolysis at 50°C for 44.8 h with 7.1% (w/v) of biomass loading, 8.1 FPU/g of enzyme loading and 0.2% (w/v) of Tween-80, maximum yields of reducing sugar (632.92 mg/g) and xylose (149.83 mg/g) could be obtained, respectively. In addition, holocellulose and hemicellulose conversion were 81.6% and 80.0%, respectively. To the best of our knowledge, this is the first report about systematic optimization of sodium hydroxide pretreatment and enzymatic hydrolysis of WSP using RSM.


2017 ◽  
Vol 6 (2) ◽  
pp. 1-6
Author(s):  
Fatimah ◽  
Deralisa Ginting ◽  
Veronica Sirait

Bioethanol from biomass is one of energy which  has a  potential as  alternative fuel. Bioethanol can be produced by using fungi or bacteria. The research was about  the performance of Zymomonas mobilis and Saccharomyces cerevisiae to change corn cobs hydrolyzate into bioethanol by adding microbes to the influence of time and ratio of  fermentation had been done. The hydrolyzate  were decomposition of corn cobs using Trichoderma reesei and Aspergillus niger. The purpose of this study was to know the conversion of  hydrolysis of corn cobs into bioethanol with variation time of fermentation (1 day, 3 days, 5 days, and 7 days) and rate of adding microbes  (Zymomonas mobilis : Saccharomyces cerevisiae = 1:1; 1:2 and 2:1) (v/v). The glucose from corn cobs hydrolyzate was 5,869 g/ml. Fermentation wass carried out at 25 0C. Bioethanol which obtained from this study was investigated using gas chromatography. The optimum bioethanol yield was equal to 6,31% by using Zymomonas mobilis : Saccharomyces cerevisiae (2:1) and at the 3 days  fermentation time.


Sign in / Sign up

Export Citation Format

Share Document