scholarly journals Tomato Crop Health, Yield, and Greenhouse Soil Conditions after 17 Years of Repeated Treatments of Biofumigation and Solarization

Author(s):  
Mariel S. Mitidieri ◽  
Virginia Brambilla ◽  
Martín Barbieri ◽  
Estela Piris ◽  
Ramón Celié ◽  
...  

The combination of biofumigation and solarization is known as bio-solarization. An experiment was performed from 2003 to 2019 in a greenhouse at INTA San Pedro, Buenos Aires province, Argentina (33°44'12.7"S 59°47'58.2"W). Treatments (TRAT) were applied every two years. TRAT evaluated were: 1=Control; 2= Solarization, 3= Biorot, a succession of organic amendments (chicken manure, broccoli, chicken manure, broccoli, tomato, and pepper crop debris, mustard, tomato crop debris, broccoli, tomato crop debris), 4=Biobras based only on the use of brassicas (rapeseed, broccoli, mustard, and Brassica campestris). Treatments were carried out in spring or summer so that a late-season tomato crop could be grown after them. The tomato hybrid planted was Superman (Petoseed), except for the last season where the hybrid used was Rodeo (BHN). Fungal pathogens controlled were Pyrenochaeta lycopersici, Fusarium solani, Sclerotium rolfsii, and Sclerotinia sclerotiorum, and nematodes like Nacobbus aberrans, Helicotylenchus and Criconemella. Fungi of Aspergillus genera were observed growing on death sclerotia of Sclerotinia sclerotiorum and Sclerotium rolfsii in Biobras and Biorot. Tomato plants in control showed a higher percentage of dead plants, root rots, and lower root dry matter at the end of each crop. Solarization alone without adding organic matter reduced this parameter in the soil and showed more death plants and less yield than Biobras and Biorot. Tomato and pepper crop debris used as biofumigants produced high yield values and adequate pathogen control. Biofumigation in combination with solarization is an effective technique for managing soil-borne pathogens in greenhouses and is being adopted by horticultural growers in Argentina.

2000 ◽  
Vol 90 (7) ◽  
pp. 751-757 ◽  
Author(s):  
Dani Eshel ◽  
Abraham Gamliel ◽  
Avshalom Grinstein ◽  
Pietro Di Primo ◽  
Jaacov Katan

The effects of reduced doses of methyl bromide (MB) or metham sodium, heating, short solarization, and soil microbial activity, alone or in combination, on survival of soilborne fungal pathogens were tested in a controlled-environment system and field plots. Sublethal doses of heating or MB delayed germination of Sclerotium rolfsii sclerotia. Combining MB and heating treatments was more effective than either treatment alone in controlling S. rolfsii and Fusarium oxysporum f. sp. basilici. The application heating followed by fumigation with MB, was significantly more effective in delaying and reducing germination of S. rolfsii sclerotia and in controlling F. oxysporum f. sp. basilici than the opposite sequence. Further, incubation in soil and exposure to microbial activity of previously heated or MB-treated sclerotia increased the mortality rate, indicating a weakening effect. Similarly, incubation of chlamydospores of F. oxysporum f. sp. melonis and F. oxysporum f. sp. radicis-lycopersici in soil in the field after fumigation further reduced their survival, confirming the laboratory results. In field tests, combining MB or metham sodium at reduced doses with short solarization was more effective in controlling fungal pathogens than either treatment alone. Treatment sequence significantly affected pathogen control in the field, similar to its effect under controlled conditions. This study demonstrates a frequent synergistic effect of combining soil treatments and its potential for improving pathogen control and reducing pesticide dose, especially when an appropriate sequence was followed.


Agriculture ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 272
Author(s):  
Rosalina Armando Tamele ◽  
Hideto Ueno ◽  
Yo Toma ◽  
Nobuki Morita

The rising cost of inorganic fertilizers, coupled with their adverse effects on soil conditions, has resulted in increasing interest in organic amendments. The objective of the present study was to evaluate the effect of organic amendments (OAs) with different C/N ratios on nitrogen use efficiency (NUE) and recovery rate, as well as on the growth and yield of Zea mays and soil properties. A precise pot experiment was conducted on a low-fertile, sandy-loam soil, and the dynamics of nitrogen (N) were also analyzed by the A-value method, using 15N tracer. The plant height of the treatment groups decreased in the following order: inorganic fertilizer (IF) = rapeseed waste (RW) > chicken manure (CnM) > bamboo tealeaf (BTL) > cow manure (CwM) > bamboo compost (BC). Furthermore, the maize fertilized with RW only took up half of the N in IF, despite producing the same yield, which indicates that the physiological nitrogen efficiency (PUE) of RW was twice as high as that of IF. RW and CnM were regarded as valuable fertilizers that could be used to replace inorganic fertilizers. A linear relationship between the N mineralization of the OAs was obtained by an incubation test and the pot experiments, estimating the effect of OA application on the maize. Maize plants mainly absorbed N derived from fertilizers; however, for the both sources of N (fertilizer and soil), N was mainly accumulated in grains followed by the leaves, stem, and root, suggesting that studies should be conducted to improve soil N use efficiency.


2016 ◽  
Vol 6 (1) ◽  
pp. 24-28
Author(s):  
Indramani Bhagat

Application of neem cake,oil cake and organic amendments including cow- dung, rabbit manure and chicken manure on four varieties of tea Camellia sinensis (L.) O. Kuntze were evaluated for induction of resistance against Sclerotium rolfsii Sacc. The emphasis was on the involvement of phenolics. It was observed that total phenol levels (total phenol and ortho-dihydroxy phenols) increased in treated inoculated tea root varieties with S. rolfsii than treated uninoculated tea root varieties. Oil cake and rabbit manure induced a rapid and distinct accumulation of phenolics in contrast to neem cake, cow dung and chicken manure.


Water ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 1640 ◽  
Author(s):  
Li-Li Zhao ◽  
Lu-Sheng Li ◽  
Huan-Jie Cai ◽  
Xiao-Hu Shi ◽  
Chao Zhang

Organic amendments improve general soil conditions and stabilize crop production, but their effects on the soil hydrothermal regime, root distribution, and their contributions to water productivity (WP) of maize have not been fully studied. A two-year field experiment was conducted to investigate the impacts of organic amendments on soil temperature, water storage depletion (SWSD), root distribution, grain yield, and the WP of summer maize (Zea mays L.) in the Guanzhong Plain of Northwest China. The control treatment (CO) applied mineral fertilizer without amendments, and the three amended treatments applied mineral fertilizer with 20 Mg ha−1 of wheat straw (MWS), farmyard manure (MFM), and bioorganic fertilizer (MBF), respectively. Organic amendments decreased SWSD compared to CO, and the lowest value was obtained in MBF, followed by MWS and MFM. Meanwhile, the lowest mean topsoil (0–10 cm) temperature was registered in MWS. Compared to CO, organic amendments generally improved the root length density (RLD) and root weight density (RWD) of maize. MBF showed the highest RLD across the whole soil profile, while MWS yielded the greatest RWD to 20 cm soil depth. Consequently, organic amendments increased grain yield by 9.9–40.3% and WP by 8.6–47.1% compared to CO, and the best performance was attained in MWS and MBF. We suggest that MWS and MBF can benefit the maize agriculture in semi-arid regions for higher yield, and WP through regulating soil hydrothermal conditions and improving root growth.


2021 ◽  
Author(s):  
Milica Dima ◽  
Aurelia Diaconu ◽  
Reta Drăghici ◽  
Drăghici Iulian ◽  
Matei Gheorghe

"For the capitalization of the climate and soil conditions for the sandy soil region in Southern Oltenia by cultivating peanuts it is necessary to use varieties with large production abilities and proper technology for the crops. In view of its cultivation on south Oltenia sandy soils, there were carried out in the period 2004-2006, at the Plants Crops Research and Development Station on Sandy Soils Dabuleni, experiments have been set regarding aspects such as: the optimal seeding period, the recommendation varieties with high yield potential and balanced composition. The research was conducted under irrigation conditions, in a three-year rotation of wheat, peanut, maize. Along with erect growth type varieties, known for their short vegetation period, rising and creeping growth type varieties can also be used; these varieties have a great production potential in our country`s conditions. Establishing the proper time for seeding is espe since sandy soils are heating quickly but are also cooling quickly, the best seeding time is between the end of April- the beginning of May, depending on the date when the seeding depth has a steady temperature, minimal required for the seed to germinate."


2014 ◽  
Vol 9 (27) ◽  
pp. 2124-2131
Author(s):  
K. Pawar A. ◽  
P. Surywanshi A. ◽  
B. Gawade D. ◽  
N. Zagade S. ◽  
G. Wadje A.

Plant Disease ◽  
1997 ◽  
Vol 81 (12) ◽  
pp. 1429-1431 ◽  
Author(s):  
C. Corley Holbrook ◽  
David M. Wilson ◽  
Michael E. Matheron ◽  
William F. Anderson

Indirect selection tools would be valuable in the development of peanut (Arachis hypogaea) cultivars with resistance to aflatoxin contamination. The objective of this study was to determine whether resistance to other fungi could be used as an indirect selection tool for resistance to colonization of peanut by Aspergillus flavus group fungi or aflatoxin contamination. Nine peanut genotypes with resistance to late leaf spot (Cercosporidium personatum) or white mold (Sclerotium rolfsii) were evaluated for 2 years at Tifton, GA, and Yuma, AZ. Plots were subjected to late-season heat and drought stress. None of the genotypes exhibited less colonization of shells or kernels by A. flavus group fungi than cv. Florunner when tested in Georgia or Arizona. None of the genotypes showed a reduced level of aflatoxin contamination in comparison to Florunner at either location. These results indicate that the mechanisms of resistance to other fungi operating in these genotypes are not effective in providing resistance to colonization by A. flavus group fungi or reducing aflatoxin contamination. Therefore, resistance to these fungi cannot be used as an indirect selection tool for resistance to aflatoxin contamination.


1970 ◽  
Vol 9 ◽  
pp. 21-27 ◽  
Author(s):  
Nabin Kumar Dangal ◽  
D. Sharma Poudyal ◽  
S. M. Shrestha ◽  
C. Adhikari ◽  
J. M. Duxbury ◽  
...  

Pot experiment was conducted during July-September 2006 to evaluate some organic amendments such as sesame (Sesamum indicum) biomass, buckwheat (Fagopyrum esculentum) biomass, neem (Azadirachta indica) leaves, chinaberry (Melia azedarch) leaves and chicken manure @ 1, 2 and 3 t ha-1 each against the rice root-knot nematode (Meloidogyne graminicola Golden & Birchfield) in direct seeded rice. The treatments were replicated five times in a randomized complete block design. The number of second stage juveniles (J2) of M. graminicola was significantly low in chicken manure @ 3 t ha-1. The root knot severity index was significantly low in sesame @ 3 t ha-1, chinaberry @ 3, 2 or 1 t ha-1, neem @ 3 t ha-1 and chicken manure @ 2 or 3 t ha-1 amended soil but root lesion severity index was lower only in chicken manure @ 2 t ha-1 treated plots. The fresh shoot weight and length were significantly high in chicken manure amendment @ 2 or 3 t ha-1 at 45th day after seeding. However, the fresh root weight, length, number of leaves and number of J2 recovered from the roots were non-significant. Key words: biomass; juveniles; Meloidogyne graminicola; root-knot severity index; root lesion severity index DOI: 10.3126/njst.v9i0.3160 Nepal Journal of Science and Technology 9 (2008) 21-27


2008 ◽  
Vol 26 (2) ◽  
pp. 87-92
Author(s):  
G.C. Percival

Abstract A three year field trial was conducted using established apple (Malus cv. Crown Gold) and horse chestnut (Aesculus hippocastanum L.) to assess the efficacy of paclobutrazol (PBZ) root drenches against the foliar pathogens apple scab (Venturia inaequalis (Cooke) G. Wint.,) and Guignardia leaf blotch (Guignardia aesculi (Peck) VB Stewart). In the case of horse chestnut, pathogen severity of Guignardia leaf blotch was less (23–79%) in each of the three-year experimental periods in PBZ-treated trees compared to non-treated controls. Pathogen severity of apple scab was not affected during the first year after PBZ application; however, less (25–73%) disease severity was recorded in years 2 and 3 compared to non-PBZ treated controls. An increased PBZ concentration was associated with lower pathogen severity of both fungal pathogens. Irrespective of species, less pathogen severity in PBZ-treated trees was accompanied with greater leaf chlorophyll fluorescence (16–49%) values as measures of leaf photosynthetic efficiency. Marked differences in growth regulation between apple cv. Crown Gold (tolerant) and horse chestnut (sensitive) were recorded. PBZ applications resulted in less mean stem extension in both tree species but only reduced mean leaf size of horse chestnut. Based on the results of this investigation it is suggested that PBZ root drenches potentially offer a means of reducing the severity of apple scab and Guignardia leaf blotch for professionals involved with the nursery industry. However, where a zero pathogen control policy is required supplementary fungicide sprays would be needed. Similarly, the potential loss of aesthetics due to excessive growth regulation needs to be weighed against the benefits of pathogen protection and failure of PBZ to achieve total pathogen control may result in strong selection pressure for PBZ resistance in surviving populations.


Sign in / Sign up

Export Citation Format

Share Document