scholarly journals ANALYTICAL SIMULATION OF A PWR USING MELCOR

2021 ◽  
Vol 8 (3A) ◽  
Author(s):  
Maritza Rodríguez Gual ◽  
Nathalia N. Araújo ◽  
Marcos C. Maturana

After the two most significant nuclear accidents in history – the Chernobyl Reactor Four explosion in Ukraine(1986) and the Fukushima Daiichi accident in Japan (2011) –, the Final Safety Analysis Report (FSAR) included a new chapter (19) dedicated to the Probabilistic Safety Assessment (PSA) and Severe Accident Analysis (SAA), covering accidents with core melting. FSAR is the most important document for licensing of siting, construction, commissioning and operation of a nuclear power plant. In the USA, the elaboration of the FSAR chapter 19 is according to the review and acceptance criteria described in the NUREG-0800 and U.S. Nuclear Regulatory Commission (NRC) Regulatory Guide (RG) 1.200. The same approach is being adopted in Brazil by National Nuclear Energy Commission (CNEN). Therefore, the FSAR elaboration requires a detailed knowledge of severe accident phenomena and an analysis of the design vulnerabilities to the severe accidents, as provided in a PSA – e.g., the identification of the initiating events involving significant Core Damage Frequency (CDF) are made in the PSA Level 1. As part of the design and certification activities of a plant of reference, the Laboratory of Risk Analysis, Evaluating and Management (LabRisco), located in the University of São Paulo (USP), Brazil, has been preparing a group of specialists to model the progression of severe accidents in Pressurized Water Reactors (PWR), to support the CNEN regulatory expectation – since Brazilian Nuclear Power Plants (NPP), i.e., Angra 1, 2 and 3, have PWR type, the efforts of the CNEN are concentrated on accidents at this type of reactor. The initial investigation objectives were on completing the detailed input data for a PWR cooling system model using the U.S. NRC MELCOR 2.2 code, and on the study of the reference plant equipment behavior – by comparing this model results and the reference plant normal operation main parameters, as modeled with RELAP5/MOD2 code.

2021 ◽  
Vol 8 (3A) ◽  
Author(s):  
Maritza Rodríguez Gual ◽  
Marcos C. Maturana ◽  
Nathália N. Araújo ◽  
Marcelo R. Martins

The Probabilistic Safety Assessment (PSA) is part of a Nuclear Power Plant (NPP) licensing process. It considers the elaboration and updating of probabilistic models that estimate the risk associated to the operation, allowing the risk monitoring from the design to the plant decommissioning, for both operational as regulatory activities. The PSA identifies those components or plant systems whose unavailability contributes significantly to the Core Damage Frequency (CDF) and to the Large Early Release Frequency (LERF) of radioactive material. Based on the PSA Level 1 results for a reference plant under design, the Analysis, Evaluating and Risk Management Laboratory (LabRisco), located in the University of São Paulo (USP), Brazil, started the analytical investigation of severe accident phenomena using the US Nuclear Regulatory Commission (NRC) MELCOR2.2 code – focusing on the qualification of a group of specialists who will subsidize a PSA Level 2 for the same plant. This PSA Level 1 shows that the accident with large CDF contribution is the Loss of Feed Water Accident (LOFW). Therefore, the initial objective of the investigation was to model the progression of severe accidents during a LOFW for the reference Pressurized Water Reactor (PWR) and to analyze the response of the plant under these accident scenarios. During the course of the hypothetical LOFW in the reference plant, hydrogen was generated – by a reaction between the high temperature steam water and the fuel-cladding inside the reactor pressure vessel (RPV) but not representing a serious threat to the RPV integrity.


2012 ◽  
Vol 2012 ◽  
pp. 1-9 ◽  
Author(s):  
Sandro Paci ◽  
Jean-Pierre Van Dorsselaere

The SARNET2 (severe accidents Research NETwork of Excellence) project started in April 2009 for 4 years in the 7th Framework Programme (FP7) of the European Commission (EC), following a similar first project in FP6. Forty-seven organisations from 24 countries network their capacities of research in the severe accident (SA) field inside SARNET to resolve the most important remaining uncertainties and safety issues on SA in water-cooled nuclear power plants (NPPs). The network includes a large majority of the European actors involved in SA research plus a few non-European relevant ones. The “Education and Training” programme in SARNET is a series of actions foreseen in this network for the “spreading of excellence.” It is focused on raising the competence level of Master and Ph.D. students and young researchers engaged in SA research and on organizing information/training courses for NPP staff or regulatory authorities (but also for researchers) interested in SA management procedures.


Author(s):  
Yuko Sakamoto ◽  
Koji Shirai ◽  
Toshiko Udagawa ◽  
Shunsuke Kondo

In Japan, nuclear power plants must be protected from tornado missiles that are prescribed by Nuclear Regular Authority (NRA). When evaluating the structural integrity of steel structures in the plant with impact analysis by numerical code, strain-based criteria are appropriate because the tornado missiles have huge impact energy and may cause large deformation of the structures. As one of the strain-based criteria, the Japan Society of Mechanical Engineers (JSME) prescribes limiting triaxial strain for severe accident of Pressurized Water Reactor (PWR) steel containment. To confirm whether or not this criterion is appropriate to the evaluation of the impact phenomena between the steel structures and the tornado missiles, a free drop impact experiment to steel plates (carbon steel and austenitic stainless steel) was carried out with heavy weights imitated on one of the tornado missiles, followed by an impact analysis of the experiment with AUTODYN code and the JSME strain-based criterion. Consequently, it was confirmed that the strain-based criterion of JSME standard was for evaluating the fracture of steel structures caused by tornado missiles.


2021 ◽  
Vol 13 (14) ◽  
pp. 7964
Author(s):  
Alain Flores y Flores ◽  
Danilo Ferretto ◽  
Tereza Marková ◽  
Guido Mazzini

The severe accident integral codes such as Methods for Estimation of Leakages and Consequences of Releases (MELCOR) are complex tools used to simulate and analyse the progression of a severe accident from the onset of the accident up to the release from the containment. For this reason, these tools are developed in order to simulate different phenomena coupling models which can simulate simultaneously the ThermoHydraulic (TH), the physics and the chemistry. In order to evaluate the performance in the prediction of those complicated phenomena, several experimental facilities were built in Europe and all around the world. One of these facilities is the PHEBUS built by Institut de Radioprotection et de Sûrete Nucléaire (IRSN) in Cadarache. The facility reproduces the severe accident phenomena for a pressurized water reactor (PWR) on a volumetric scale of 1:5000. This paper aims to continue the assessment of the MELCOR code from version 2.1 up to version 2.2 underlying the difference in the fission product transport. The assessment of severe accident is an important step to the sustainability of the nuclear energy production in this period where the old nuclear power plants are more than the new reactors. The analyses presented in this paper focuses on models assessment with attention on the influence of B4C oxidation on the release and transport of fission products. Such phenomenon is a concern point in the nuclear industry, as was highlighted during the Fukushima Daiichi accident. Simulation of the source term is a key point to evaluate the severe accident hazard along with other safety aspects.


Author(s):  
Saya Lee ◽  
Suhaeb Abdulsattar ◽  
Yassin A. Hassan

During a Loss of Coolant Accident (LOCA), the high energy jet from the break may impinge on surrounding surfaces and materials, producing a relatively large amount of fibrous debris (mostly insulation materials). The debris may be transported through the reactor containment and reach the sump strainers. Accumulation of such debris on the strainers’ surface can cause a loss of Net Positive Suction Head (NPSH) and negatively affect the Emergency Core Cooling System (ECCS) capabilities. The U.S. Nuclear Regulatory Commission (U.S.NRC) initiated the Generic Safety Issue (GSI) 191 to understand the physical phenomena involved in this type of event, and help develop the tools to prove the safety and reliability of the existing Light Water Reactors (LWR) under these conditions. Some nuclear power plants have already adopted countermeasures in an attempt to limit the effect of the debris accumulation on the ECCS performance, by replacing or modifying the existing strainer configurations. In this paper, two different strainer designs have been considered and sensitivity analysis was conducted to study the effect of the approach velocity on the pressure drop at the strainer caused by the debris accumulation. The development of the fibrous beds was visually recorded in order to correlate the head loss, the approach velocity, and the thickness of the fibrous bed. The experimental results were compared to semi-empirical models and theoretical models proposed by previous researchers.


2020 ◽  
Vol 6 ◽  
pp. 39
Author(s):  
Jean-Pierre Van Dorsselaere ◽  
Ahmed Bentaib ◽  
Thierry Albiol ◽  
Florian Fichot ◽  
Alexei Miassoedov ◽  
...  

The Fukushima-Daiichi accidents in 2011 underlined the importance of severe accident management (SAM), including external events, in nuclear power plants (NPP) and the need of implementing efficient mitigation strategies. To this end, the Euratom work programmes for 2012 and 2013 was focused on nuclear safety, in particular on the management of a possible severe accident at the European level. Relying upon the outcomes of the successful Euratom SARNET and SARNET2 projects, new projects were launched addressing the highest priority issues, aimed at reducing the uncertainties still affecting the main phenomena. Among them, PASSAM and IVMR project led by IRSN, ALISA and SAFEST projects led by KIT, CESAM led by GRS and sCO2-HeRO lead by the University of Duisburg-Essen. The aim of the present paper is to give an overview on the main outcomes of these projects.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Min Yoo ◽  
Sung Min Shin ◽  
Hyun Gook Kang

Reliable information through instrumentation systems is essential in mitigating severe accidents such as the one that occurred at the Fukushima Daiichi nuclear power plant. There are five elements which might pose a potential threat to the reliability of parameter detection at nuclear power plants during a severe accident: high temperature, high pressure, high humidity, high radiation, and missiles generated during the evolution of a severe accident. Of these, high temperature apparently poses the most serious threat, since thin shielding can get rid of pressure, humidity, radiation (specifically, alpha and beta radiations), and missile effects. In view of this fact, our study focused on designing an instrument transmitter protecting device that can eliminate the high-temperature effect on transmitters to maintain their functional integrity. We present herein a novel concept for designing such a device in terms of heat transfer model that takes into account various heat transfer mechanisms associated with the device.


Author(s):  
Kenta Shimomura ◽  
Takashi Onizawa ◽  
Shoichi Kato ◽  
Masanori Ando ◽  
Takashi Wakai

This paper describes the formulation of material characteristics of austenitic stainless steels at extremely high temperature which meets in some kinds of severe accidents of nuclear power plants. After the severe accident in Fukushima dai-ichi nuclear power plants, it has been supposed to be very important not only to prevent the occurrence of abnormal conditions, i.e. from the first to the third layer safety, but also to prevent the expansion of the accident conditions, i.e. the fourth layer safety[1] [2]. In order to evaluate the structural integrity under the severe accident condition, material characteristics which can be used in the numerical analyses, such as finite element analysis, were required [3] [4]. However, there were no material characteristics applicable to the structural integrity assessment at extremely high temperature. Therefore, a series of tensile and creep tests was performed for austenitic stainless at extremely high temperature which meets in some kinds of severe accidents of nuclear power plants, namely up to 1000 °C. Based on the acquired data from the tests, monotonic stress-strain equation and creep rupture equation applicable to the structural analysis at extremely high temperature, up to 1000 °C were formulated. As a result, these formulae make it possible to conduct the structural integrity assessment using numerical analysis techniques, such as finite element method.


Sign in / Sign up

Export Citation Format

Share Document