Intrinsic challenges in x-ray spectrometry instrumentation with CdTe diode detector

2021 ◽  
Vol 9 (2C) ◽  
Author(s):  
Matheus Rebello do Nascimento ◽  
Jose Guilherme Pereira Peixoto ◽  
Leonardo De Castro Pacífico ◽  
Eric Matos Macêdo

The X-ray spectrometry is subject to a diversity of problems that distort the measured beam. To observe them, spectra from N20, N25, N30, N60, N80, and N100 radiation qualities were obtained and evaluated their non-correction impact in the values of mean energy when compared with the requirements on ISO 4037-1 standard. The error percentages calculated were 2%, 2%, 2%, 11%, 9%, and 6%, respectively, related to partial energy deposition, efficiency loss, and charge trapping. These results suggest the need for correction of measured spectra, mainly for voltages higher than 30 kV.

Materials ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3553
Author(s):  
Dengwang Wang ◽  
Yong Gao ◽  
Sheng Wang ◽  
Jie Wang ◽  
Haipeng Li

Carbon/Phenolic (C/P), a typical anisotropic material, is an important component of aerospace and often used to protect the thermodynamic effects of strong X-ray radiation. In this paper, we establish the anisotropic elastic-plastic constitutive model, which is embedded in the in-house code “RAMA” to simulate a two-dimensional thermal shock wave induced by X-ray. Then, we compare the numerical simulation results with the thermal shock wave stress generated by the same strong current electron beam via experiment to verify the correctness of the numerical simulation. Subsequently, we discuss and analyze the rules of thermal shock wave propagation in C/P material by further numerical simulation. The results reveal that the thermal shock wave represents different shapes and mechanisms by the radiation of 1 keV and 3 keV X-rays. The vaporization recoil phenomenon appears as a compression wave under 1 keV X-ray irradiation, and X-ray penetration is caused by thermal deformation under 3 keV X-ray irradiation. The thermal shock wave propagation exhibits two-dimensional characteristics, the energy deposition of 1 keV and 3 keV both decays exponentially, the energy deposition of 1 keV-peak soft X-ray is high, and the deposition depth is shallow, while the energy deposition of 3 keV-peak hard X-ray is low, and the deposition depth is deep. RAMA can successfully realize two-dimensional orthotropic elastoplastic constitutive relation, the corresponding program was designed and checked, and the calculation results for inspection are consistent with the theory. This study has great significance in the evaluation of anisotropic material protection under the radiation of intense X-rays.


2009 ◽  
Vol 1203 ◽  
Author(s):  
Erik M. Muller ◽  
John Smedley ◽  
Balaji Raghothamachar ◽  
Mengjia Gaowei ◽  
Jeffrey W. Keister ◽  
...  

AbstractX-ray topography data are compared with photodiode responsivity maps to identify potential candidates for electron trapping in high purity, single crystal diamond. X-ray topography data reveal the defects that exist in the diamond material, which are dominated by non-electrically active linear dislocations. However, many diamonds also contain defects configurations (groups of threading dislocations originating from a secondary phase region or inclusion) in the bulk of the wafer which map well to regions of photoconductive gain, indicating that these inclusions are a source of electron trapping which affect the performance of diamond X-ray detectors. It was determined that photoconductive gain is only possible with the combination of an injecting contact and charge trapping in the near surface region. Typical photoconductive gain regions are 0.2 mm across; away from these near-surface inclusions the device yields the expected diode responsivity.


2009 ◽  
Vol 16 (2) ◽  
pp. 143-151 ◽  
Author(s):  
Robin L. Owen ◽  
James M. Holton ◽  
Clemens Schulze-Briese ◽  
Elspeth F. Garman

Accurate measurement of photon flux from an X-ray source, a parameter required to calculate the dose absorbed by the sample, is not yet routinely available at macromolecular crystallography beamlines. The development of a model for determining the photon flux incident on pin diodes is described here, and has been tested on the macromolecular crystallography beamlines at both the Swiss Light Source, Villigen, Switzerland, and the Advanced Light Source, Berkeley, USA, at energies between 4 and 18 keV. These experiments have shown that a simple model based on energy deposition in silicon is sufficient for determining the flux incident on high-quality silicon pin diodes. The derivation and validation of this model is presented, and a web-based tool for the use of the macromolecular crystallography and wider synchrotron community is introduced.


2019 ◽  
Vol 216 ◽  
pp. 414-433 ◽  
Author(s):  
Johannes Mahl ◽  
Stefan Neppl ◽  
Friedrich Roth ◽  
Mario Borgwardt ◽  
Catherine Saladrigas ◽  
...  

Laser-induced energy deposition and heat transport in CuO is studied by picosecond time-resolved X-ray absorption spectroscopy.


2019 ◽  
Vol 14 (06) ◽  
pp. C06017-C06017
Author(s):  
T. Terao ◽  
A. Koike ◽  
K. Takagi ◽  
H. Morii ◽  
T. Okunoyama ◽  
...  

1990 ◽  
Vol 115 ◽  
pp. 126-131
Author(s):  
S. Serio ◽  
E. Antonucci ◽  
M.A. Dodero ◽  
G. Peres ◽  
F. Reale

AbstractCompact solar flares are triggered by sudden energy release in magnetically confined plasma. This class of flares is well suited to be studied with numerical hydrodynamic models. In particular, one can compare the evolution of observed and synthetic X-ray spectra, computed under various assumptions for the mechanism of impulsive energy deposition, to constrain theoretical models and their parameter space. We discuss recent results on solar flares along this line, non thermal to models of energy depositions by relativistic electron beams. We shall also discuss possible applications of X-ray spectral synthesis to stellar flares.


1996 ◽  
Vol 43 (6) ◽  
pp. 2709-2714 ◽  
Author(s):  
C.S. Dyer ◽  
P.R. Truscott ◽  
H.E. Evans ◽  
C.L. Peerless

1980 ◽  
Vol 51 (5) ◽  
pp. 2569
Author(s):  
E. J. T. Burns ◽  
J. Chang ◽  
A. V. Farnsworth ◽  
J. P. VanDevender ◽  
M. M. Widner ◽  
...  

1986 ◽  
Vol 141-143 ◽  
pp. 221-225 ◽  
Author(s):  
A.M. Hassanein ◽  
H.M. Attaya ◽  
G.L. Kulcinski

Sign in / Sign up

Export Citation Format

Share Document