scholarly journals Study of the seasonality and hydrology as drivers of phytoplankton abundance and composition in a shallow estuary, Weeks Bay, Alabama (USA)

2019 ◽  
Vol 8 (3) ◽  
Author(s):  
Lucie Novoveská

Small, shallow estuaries can be highly vulnerable to land use changes, eutrophication and habitat loss but are understudied with respect to their larger counterparts. Where they are monitored, the descriptors of their environmental status are typically chlorophyll a as a proxy for phytoplankton abundance and nutrient concentration as a presumed driver of the phytoplankton community. We present data from a shallow estuary, Weeks Bay, Alabama (USA), that demonstrates that chlorophyll a and nutrient concentrations are inadequate descriptors of ecological state. Weeks Bay had relatively high nutrient concentrations (86–169µM total nitrogen and 1.0–5.2µM total phosphorus) and highly variable chlorophyll a concentrations (2.2–160.5μgL-1). The variability in chlorophyll a was most highly correlated with nutrient levels and river discharge. There was no relationship between chlorophyll a and community composition. Two of three maxima in chlorophyll a (> 100 μgL-1) were caused by non-toxic chlorophytes and diatoms; the third was dominated by potentially toxic raphidophyte Heterosigma akashiwo. The phytoplankton were diverse even at the class level and community composition varied on both annual and inter-annual scales. The best overall descriptor of phytoplankton composition was the annual cycle in temperature, but inter-annual variability was correlated with hydrology. In the winter, dominance by dinoflagellates, including several taxa that form harmful algal blooms, was correlated with low river discharge, low turbidity and high zooplankton numbers, while dominance by diatoms was correlated with high and variable river discharge and high turbidity. In the summer, dominance by cryptophytes versus diatoms was consistent with changes in groundwater discharge. The dominance of harmful algal bloom taxa vs non-toxic ones could not be inferred from chlorophyll a and/or nutrient concentrations.

2021 ◽  
Vol 49 (1) ◽  
pp. 110-124
Author(s):  
Victor A. Cervantes-Urieta ◽  
Ma. Nieves Trujillo-Tapia ◽  
Juan Violante-González ◽  
Giovanni Moreno-Díaz ◽  
Agustín A. Rojas-Herrera ◽  
...  

The phytoplankton community's temporal variability associated with environmental factors and harmful algal blooms in Acapulco Bay was analyzed. Phytoplankton samples were taken monthly at three sites (MSL: Morro de San Lorenzo, CDO: Casa Díaz Ordaz, and PP: Playa Palmitas) over 11 months in 2018. The physical and chemical variables of surface water were measured in situ, and the composition and community structure of phytoplankton were analyzed. The physical and chemical characteristics studied varied significantly. The highest temperatures were obtained in September and October (September: 29.6 ± 3.58°C, October: 34.61 ± 1.83°C), whereas the highest salinities and chlorophyll-a concentrations occurred from February to May (salinity: 34.06 ± 0.38, chlorophyll-a: 2.73 ± 0.15 μg L-1). The highest oxygen concentrations were recorded during the rainy season (June 91.8% and December 100%). A total of 201 phytoplankton species were identified: 94 diatoms, 101 dinoflagellates, 4 cyanobacteria, and 2 silicoflagellates. Diatoms dominated during the rainy season, whereas dinoflagellates dominated during the dry season (June to December). A total of 17 harmful species were identified; four toxin-producing species included a diatom genus (Pseudonitszchia sp.) and three dinoflagellate species (Gymnodinium catenatum, Dinophysis caudata, and Phalacroma rotundata). One species that produces oxygen reactive species and hemolysis (Margalefidinium polykrikoides) caused a harmful algal bloom at the CDO and PP stations. The temperature is one of the most critical factors for its bloom in October.


1992 ◽  
Vol 49 (9) ◽  
pp. 1908-1915 ◽  
Author(s):  
Andrew M. Turner ◽  
Gary G. Mittelbach

We examined the effects of grazer community composition and fish on phytoplankton abundance by manipulating zooplankton community structure and the intensity of planktivory in a factorial experiment. Enclosures (1700-L bags) were treated with fish (present/absent) and two grazer communities (one a large-bodied community dominated by Daphnia and the other a small-bodied community dominated by Ceriodaphnia) in a 2 × 2 factorial design. We sampled zooplankton and algae every 4–8 d during the 5-wk experiment. Algal biovolume, chlorophyll a, total particulates, and light extinction were all significantly higher in the presence of fish. Further, the effect of fish on algal standing crop did not depend on which grazer assemblage was initially present. Fish enhanced algal standing crop to the same degree in both Daphnia and Ceriodaphnia treatments. We discuss these results in light of patterns reported in the literature, and the nature of size-structured interactions among fish, zooplankton, and algae.


2019 ◽  
Vol 11 (1) ◽  
pp. 1-12
Author(s):  
Hanif Budi Prayitno ◽  
. Afdal

Phytoplankton blooms due to nutrient enrichment (eutrophication) have been considered as the primary factor causing several massive fish kills occurred in the Jakarta Bay. This study aims to determine the spatial variation of phytoplankton abundance based on chlorophyll-a concentration and its relationship with nutrient level and composition. A field observation was conducted in July 2015 measuring chlorophyll-a and nutrient concentrations. Chlorophyll-a was measured using fluorometer Trilogy AU-10 while nutrients was using spectrophotometer Shimadzu UV-1800. The result showed that chlorophyll-a concentration was relatively higher in the western compared to the eastern region of the Jakarta Bay. In addition, the western region was high in orthophosphate, nitrate and silicate while the eastern region was high in ammonium and nitrate. Statistical analysis shows that chlorophyll-a had the highest significant correlation against orthophosphate in the western region and chlorophyll-a had no significant correlation with nutrients in the eastern region. It seems that phosphorus was the primary determinant of chlorophyll-a variability with a concentration of orthophosphate of more than 0.028 mg P/L is required to increase chlorophyll-a concentration. In addition, low orthophosphate concentration (0.014 mg P/L) below its minimum requirement for maximum phytoplankton growth was likely the factor causing the absence of chlorophyll-a and nutrients relationship in the eastern region. In summary, phosphorus is seemingly the primary eutrophication determinant in the Jakarta Bay.


Life ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 107
Author(s):  
Ana Sotomayor-Garcia ◽  
Maria Montserrat Sala ◽  
Isabel Ferrera ◽  
Marta Estrada ◽  
Evaristo Vázquez-Domínguez ◽  
...  

We explored how changes of viral abundance and community composition among four contrasting regions in the Southern Ocean relied on physicochemical and microbiological traits. During January–February 2015, we visited areas north and south of the South Orkney Islands (NSO and SSO) characterized by low temperature and salinity and high inorganic nutrient concentration, north of South Georgia Island (NSG) and west of Anvers Island (WA), which have relatively higher temperatures and lower inorganic nutrient concentrations. Surface viral abundance (VA) was highest in NSG (21.50 ± 10.70 × 106 viruses mL−1) and lowest in SSO (2.96 ± 1.48 × 106 viruses mL−1). VA was positively correlated with temperature, prokaryote abundance and prokaryotic heterotrophic production, chlorophyll a, diatoms, haptophytes, fluorescent organic matter, and isoprene concentration, and was negatively correlated with inorganic nutrients (NO3−, SiO42−, PO43−), and dimethyl sulfide (DMS) concentrations. Viral communities determined by randomly amplified polymorphic DNA–polymerase chain reaction (RAPD-PCR) were grouped according to the sampling location, being more similar within them than among regions. The first two axes of a canonical correspondence analysis, including physicochemical (temperature, salinity, inorganic nutrients—NO3−, SiO42−, and dimethyl sulfoniopropionate -DMSP- and isoprene concentrations) and microbiological (chlorophyll a, haptophytes and diatom, and prokaryote abundance and prokaryotic heterotrophic production) factors accounted for 62.9% of the variance. The first axis, temperature-related, accounted for 33.8%; the second one, salinity-related, accounted for 29.1%. Thus, different environmental situations likely select different hosts for viruses, leading to distinct viral communities.


2005 ◽  
Vol 40 (4) ◽  
pp. 418-430 ◽  
Author(s):  
Markus L. Heinrichs ◽  
Brian F. Cumming ◽  
Kathleen R. Laird ◽  
J. Sanford Hart

Abstract Diatom and chironomid analysis of sediments encompassing the past 400 years from Bouchie Lake, British Columbia, suggests two distinct periods of limnological conditions. Prior to 1950 AD, Fragilaria construens and F. pinnata are the most common diatom species, and Chironomus, Procladius and Tanytarsini dominate the chironomid record. Moderately low nutrient concentrations consistent with oligo-mesotrophic lakes are inferred. From 1950, the diatom assemblage is dominated by Stephanodiscus parvus, a eutrophic indicator, whereas the chironomid communities show a relative increase in littoral taxa coincident with lower head capsule abundance. Higher nutrient levels, specifically total phosphorus, which increased from 8 µg L-1 prior to 1950 to 20 µg L-1 currently, are coincident with midge communities indicative of lower oxygen concentrations. Observed biotic changes and nutrient levels inferred from the sediment core correspond to historical land-use changes.


2021 ◽  
Vol 674 (1) ◽  
pp. 012079
Author(s):  
S Karina ◽  
S Agustina ◽  
N Nurfadillah ◽  
A A Rafsanjani ◽  
J Heriantoni

Water ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1409
Author(s):  
Hamdhani Hamdhani ◽  
Drew E. Eppehimer ◽  
David Walker ◽  
Michael T. Bogan

Chlorophyll-a measurements are an important factor in the water quality monitoring of surface waters, especially for determining the trophic status and ecosystem management. However, a collection of field samples for extractive analysis in a laboratory may not fully represent the field conditions. Handheld fluorometers that can measure chlorophyll-a in situ are available, but their performance in waters with a variety of potential light-interfering substances has not yet been tested. We tested a handheld fluorometer for sensitivity to ambient light and turbidity and compared these findings with EPA Method 445.0 using water samples obtained from two urban lakes in Tucson, Arizona, USA. Our results suggested that the probe was not sensitive to ambient light and performed well at low chlorophyll-a concentrations (<25 µg/L) across a range of turbidity levels (50–70 NTU). However, the performance was lower when the chlorophyll-a concentrations were >25 µg/L and turbidity levels were <50 NTU. To account for this discrepancy, we developed a calibration equation to use for this handheld fluorometer when field monitoring for potential harmful algal blooms in water bodies.


2008 ◽  
Vol 5 (2) ◽  
pp. 281-298 ◽  
Author(s):  
P. Raimbault ◽  
N. Garcia ◽  
F. Cerutti

Abstract. During the BIOSOPE cruise the RV Atalante was dedicated to study the biogeochemical properties in the South Pacific between the Marquesas Islands (141° W–8° S) and the Chilean upwelling (73° W–34° S). Over the 8000 km covered by the cruise, several different trophic situations were encountered, in particular strong oligotrophic conditions in the South Pacific Gyre (SPG, between 123° W and 101° W). In this isolated region, nitrate was undetectable between the surface and 160–180 m and only trace quantities (<20 nmoles l−1) of regenerated nitrogen (nitrite and ammonium) were detected, even in the subsurface maximum. Integrated nitrate over the photic layer, which reached 165 m, was close to zero. Despite this severe nitrogen-depletion, phosphate was always present in significant concentrations (≈0.1 μmoles l−1), while silicic acid was maintained at low but classical oceanic levels (≈1 μmoles l−1). In contrast, the Marquesas region (MAR) to the west and Chilean upwelling (UPW) to the east were characterized by high nutrient concentrations, one hundred to one thousand fold higher than in the SPG. The distribution of surface chlorophyll reflected the nitrate gradient, the lowest concentrations (0.023 nmoles l−1) being measured at the centre of the SPG, where integrated value throughout the photic layer was very low (≈ 10 mg m−2). However, due to the relatively high concentrations of chlorophyll-a encountered in the DCM (0.2 μg l−1), chlorophyll-a concentrations throughout the photic layer were less variable than nitrate concentrations (by a factor 2 to 5). In contrast to chlorophyll-a, integrated particulate organic matter (POM) remained more or less constant along the study area (500 mmoles m−2, 60 mmoles m−2 and 3.5 mmoles m−2 for particulate organic carbon, particulate organic nitrogen and particulate organic phosphorus, respectively), with the exception of the upwelling, where values were two fold higher. The residence time of particulate carbon in the surface water was only 4–5 days in the upwelling, but up to 30 days in the SPG, where light isotopic δ15N signal noted in the suspended POM suggests that N2-fixation provides a dominant supply of nitrogen to phytoplankton. The most striking feature was the large accumulation of dissolved organic matter (DOM) in the SPG compared to the surrounding waters, in particular dissolved organic carbon (DOC) where concentrations were at levels rarely measured in oceanic waters (>100 μmoles l−1). Due to this large pool of DOM in the SPG photic layer, integrated values followed a converse geographical pattern to that of inorganic nutrients with a large accumulation in the centre of the SPG. Whereas suspended particulate matter in the mixed layer had a C/N ratio largely conforming to the Redfield stochiometry (C/N≈6.6), marked deviations were observed in this excess DOM (C/N≈16 to 23). The marked geographical trend suggests that a net in situ source exists, mainly due to biological processes. Thus, in spite of strong nitrate-depletion leading to low chlorophyll biomass, the closed ecosystem of the SPG can accumulate large amounts of C-rich dissolved organic matter. The implications of this finding are examined, the conclusion being that, due to weak lateral advection, the biologically produced dissolved organic carbon can be accumulated and stored in the photic layer for very long periods. In spite of the lack of seasonal vertical mixing, a significant part of new production (up to 34%), which was mainly supported by dinitrogen fixation, can be exported to deep waters by turbulent diffusion in terms of DOC. The diffusive rate estimated in the SPG (134 μmolesC m−2 d−1), was quite equivalent to the particles flux measured by sediments traps.


2016 ◽  
Vol 28 (0) ◽  
Author(s):  
Nilva Brandini ◽  
◽  
Ana Paula de Castro Rodrigues ◽  
Ilene Matanó Abreu ◽  
Luiz Carlos Cotovicz Junior ◽  
...  

Abstract Aim: There are few studies dealing with the biogeochemical processes occurring in small estuaries receiving high sewage loading in tropical regions. The aim of this investigation was to characterize the biogeochemical behavior of nutrients in superficial waters collected at the Iguaçu estuarine system, during specific conditions (neap tide), located at the inner sector of a heavily eutrophicated embayment (Guanabara Bay, SE Brazil). Methods Physical and chemical variables were measured in situ (pH, temperature, conductivity, salinity, total dissolved solids, transparency, dissolved oxygen), whereas suspended particulate matter, chlorophyll a, phaepigments and nutrients (carbon, nitrogen and phosphorus forms) were measured in laboratory across the mesohaline estuarine gradient. Results The Iguaçu River mouth is in a high stage of eutrophication, considering nutrient concentrations, chlorophyll a and transparency of water column. Results indicate a transition from heterotrophic conditions to autotrophic conditions, since the nutrients concentrations showed a decreasing pattern along the saline gradient, while the chlorophyll an increased over the transects. The pH values and chlorophyll : phaeopigments ratios are significantly related to the amount and quality of organic matter contents, especially at transects under strong marine influence. More than 95% of the dissolved and total nitrogen concentrations are represented by NH4+ contributions, which are related to the ammonification of organic matter contents in this region, indicating the existence of untreated sewage loads in this area. Conclusion In this study, the Iguaçu River seemed to contribute with high inputs of nutrients that support important phytoplankton production at the inner regions of the bay related to the CO2 sink and autotrophic metabolism, showing the importance of verifying the biogeochemical behaviors of nutrients in estuarine areas, even in small scale.


Sign in / Sign up

Export Citation Format

Share Document