Effect of the addition of selected silicon fillers on Si- PSA shrinkage

2021 ◽  
Vol 10 (4) ◽  
pp. 157-159
Author(s):  
Adrian Krzysztof Antosik ◽  
Nataniel Adrian Antosik

The concept of shrinkage phenomenon is widely described in the available literature. With respect to pressure-sensitive adhesives (PSA) in general, the definition of shrinkage is understood to be "less than its original size" and is closely related to the crosslinking process and the effect of the crosslinker on the test adhesive. Shrinkage alongside adhesive properties (adhesion, tackiness) and mechanical (cohesion) is one of the most important characteristics of a self-adhesive adhesive. It is very important in terms of production when receiving, for example, decorative banners or self-adhesive films where crosslinked adhesive and thus shrinkage can affect the surface of the adhesive material and create deformations. In the case of PSA, the acceptable adhesive pressure shrinkage must not exceed 0.5 %. Contraction is an important criterion for assessing the aging resistance of PSA materials. There are no studies on the shrinkage of silicone pressure-sensitive adhesives in literature, but many references to carbon-based adhesives have been reported.

Author(s):  
Adrian Krzysztof Antosik ◽  
Karolina Mozelewska ◽  
Marta Piątek-Hnat ◽  
Zbigniew Czech ◽  
Marcin Bartkowiak

AbstractThe purpose of this work was to obtain single-sided tapes with different concentrations of kaolin and to check its impact on the self-adhesive properties of commercial adhesives. The most important self-adhesive properties were examined, such as tack, peel adhesion, shear strength, shrinkage, and thermal resistance. Tapes based on silicone PSAs with kaolin can be used in many branches of industry to bond elements operating at elevated temperatures, i.e., in aeronautics, aerospace including solar cells for satellites and space stations. There are few reports on one-sided adhesive tapes based on silicones with the addition of kaolin. However, taking into account the number of their potential applications, we did self-adhesive tests and explained how kaolin affects them. In addition, the reactivity of the crosslinking compound and silicone adhesive during the crosslinking process and the thermal effects of this process were also examined. In connection with the various applications of the obtained tapes, also the flammability and heat of combustion were tested, in accordance with applicable standards. As a result of the tests, one-sided self-adhesive tapes with new properties (increased temperature resistance, less shrinkage, and increased resistance to flammability) were obtained.


Polymers ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 4413
Author(s):  
Marcin Bartkowiak ◽  
Zbigniew Czech ◽  
Hyun-Joong Kim ◽  
Gyu-Seong Shim ◽  
Małgorzata Nowak ◽  
...  

The use of ultraviolet radiation (UV) technology for the crosslinking of acrylic pressure-sensitive adhesives (PSA) is the one of various crosslinking methods, being the alternative to the conventional crosslinking process of solvent-based acrylic systems. It also requires a photoinitiator to absorb the impinging UV and induce photocrosslinking. As previously mentioned, a photoinitiator is one of the important and necessary components in UV-inducted crosslinking of acrylic pressure-sensitive adhesives. The activity of multifunctional conventional saturated photoinitiators of type I and type II, especially benzophenone-based in the photoreactive UV-crosslinkable acrylic PSA was described. The effect of the multifunctional type-II photoinitiators on the acrylic PSA, such as tack, peel adhesion and shear strength were summarized.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Dagmar Voigt ◽  
Jaekang Kim ◽  
Anne Jantschke ◽  
Michael Varenberg

Abstract Buds of horse-chestnut trees are covered with a viscous fluid, which remains sticky after long-term exposure to heat, frost, radiation, precipitation, deposition of aerosols and particles, attacks by microbes and arthropods. The present study demonstrates that the secretion does not dry out under arid conditions, not melt at 50 °C, and not change significantly under UV radiation or frost at a microscopic level. It is slightly swellable under wet conditions; and, it universally wets and adheres to substrates having different polarities. Measured pull-off forces do not differ between hydrophilic and lipophilic surfaces, ranging between 58 and 186 mN, and resulting in an adhesive strength up to 204 kPa. The mechanical and chemical properties of secretion resemble those of pressure-sensitive adhesives. The Raman, infrared, and nuclear magnetic resonance spectra show the clear presence of saturated aliphatic hydrocarbons, esters, free carboxylic acids, as well as minor amounts of amides and aromatic compounds. We suggest a multi-component material (aliphatic hydrocarbon resin), including alkanes, fatty acids, amides, and tackifying terpenoids embedded in a fluid matrix (fatty acids) comprising nonpolar and polar portions serving the universal and robust adhesive properties. These characteristics matter for ecological-evolutionary aspects and can inspire innovative designs of multifunctional, biomimetic pressure-sensitive adhesives and varnishes.


2000 ◽  
Vol 629 ◽  
Author(s):  
Kenneth R. Shull ◽  
Alfred J. Crosby ◽  
Cynthia M. Flanigan

ABSTRACTTriblock copolymers with poly (methyl methacrylate) (PMMA) end blocks and a poly (n-butyl acrylate) (PnBA) midblock have been synthesized as model pressure sensitive adhesives and thermoreversible gels. These materials dissolve in a variety of alcohols at temperatures above 60 °C to form freely flowing liquids. At lower temperatures the PMMA end-blocks associate so that the solutions form ideally elastic solids. In our case the solvent is 2-ethylhexanol, polymer volume fractions vary from 0.05 to 0.3, and the elastic moduli are close to 10,000 Pa. We have conducted three types of experiments to elucidate the origins of adhesion and bulk mechanical properties of these materials: 1) Weakly adhering gels: The adhesive properties of the gels are dominated by the solvent. Very little adhesion hysteresis is observed in this case, although we do observe hysteresis associated with the frictional response of the layers. 2) Strongly adhering gels. By heating the gels in contact with a PMMA surface, it is possible to bond the gels to the surface. Development of adhesion as the PMMA blocks penetrate into the PMMA substrate can be probed in this case. The cohesive strengths of the gels are found to be substantially greater than their elastic moduli, so that these materials can be reversibly extended to very high strains. These properties have enabled us to probe the origins of elastic shape instabilities that play a very important role in the behavior of thin adhesive layers. 3) Dried gels – model pressure sensitive adhesives. By removing the solvent at low temperatures, the underlying structure of the gel is preserved, giving a thin elastic layer with excellent performance as a pressure sensitive adhesive. Resistance to adhesive failure, expressed as a velocity-dependent fracture energy, greatly exceeds the thermodynamic work of adhesion. This energy is further magnified by ‘bulk’ energy dissipation when the stress applied to the adhesive layer exceeds its yield stress.


Polymer ◽  
2009 ◽  
Vol 50 (7) ◽  
pp. 1654-1670 ◽  
Author(s):  
Andrew B. Foster ◽  
Peter A. Lovell ◽  
Michael A. Rabjohns

Polymers ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 2879
Author(s):  
Irene Márquez ◽  
Núria Paredes ◽  
Felipe Alarcia ◽  
José Ignacio Velasco

Currently, pressure-sensitive adhesives (PSA) are used in more than 80% of all labels in the market today. They do not require any heat, solvent, or water to activate: It only takes light pressure to apply them to a product surface. Many products that come in glass bottles need labels that have staying power in harsh conditions. For that reason, it is necessary to have a good balance between all the polymer adhesive properties. In this study is described how adhesive properties of water-based PSA were affected by varying the amount of functional monomer acrylic acid (AA) and chain transfer agent, tert-dodecyl mercaptan (TDM). Four series of PSA were prepared by emulsion polymerization. Within each polymer series, the AA monomer proportion was held constant between 0.5 and 3.0 phm, and the fraction of the chain transfer agent was varied 0.0 to 0.2 phm. The results showed that the gel content decreased with the increase of the chain transfer agent and with the reduction of AA. All adhesives properties (tack, peel, and shear resistance) improved with increasement of the AA monomer. The increase of chain transfer agent caused decrease of the gel content resulting in higher peel resistance and tack values, but lower shear resistance values.


Sign in / Sign up

Export Citation Format

Share Document