scholarly journals Quartz ceramics modified by nanodispersed silica additive

2018 ◽  
Vol 25 (3) ◽  
pp. 613-618 ◽  
Author(s):  
E.S. Khomenko ◽  
2020 ◽  
Vol 992 ◽  
pp. 156-161
Author(s):  
N.P. Lukuttsova ◽  
E.G. Borovik ◽  
D.A. Pehenko

The effect of the modifying nanodispersed silica (NS) additive, obtained by the polycondensation method, on the properties of fine-grained concrete (FGC) is studied. It is revealed that the dependence of the NS-additive particle size on its age is extreme. The maximum number of particles of up to 100 nm in the additive is observed at the age of 10 days, and then their number decreases. However, it affects the FGC strength little even after 30 days of the additive storage. It is established that the NS-additive could be most effectively used with 0.23% of an active silica concentration and pH 4.1 in combination with S-3. At that, the porosity declines from 17.5 to 12.9% and the pore diameter diminishes from 3.171 to 0.689 μm. It leads to an increase in the compressive strength by 2 times and a decrease in water absorption by 1.6 times as compared to the control composition without additives. An increase in the frost resistance of the modified fine-grained concrete to F250 is recorded; it occurs due to a decrease in porosity at portlandite binding with amorphous silica additives into low-basic calcium hydrosilicates.


Author(s):  
D. V. Kharitonov ◽  
A. V. Terekhin ◽  
M. Yu. Rusin ◽  
A. A. Anashkina ◽  
M. S. Tychinskaya ◽  
...  

2018 ◽  
Vol 9 (5) ◽  
pp. 616-624 ◽  
Author(s):  
Syahrir Ridha ◽  
Afif Izwan Abd Hamid ◽  
Riau Andriana Setiawan ◽  
Ahmad Radzi Shahari

PurposeThe purpose of this paper is to investigate the resistivity of geopolymer cement with nano-silica additive toward acid exposure for oil well cement application.Design/methodology/approachAn experimental study was conducted to assess the acid resistance of fly ash-based geopolymer cement with nano-silica additive at a concentration of 0 and 1 wt.% to understand its effect on the strength and microstructural development. Geopolymer cement of Class C fly ash and API Class G cement were used. The alkaline activator was prepared by mixing the proportion of sodium hydroxide (NaOH) solutions of 8 M and sodium silicate (Na2SiO3) using ratio of 1:2.5 by weight. After casting, the specimens were subjected to elevated curing condition at 3,500 psi and 130°C for 24 h. Durability of cement samples was assessed by immersing them in 15 wt.% of hydrochloric acid and 15 wt.% sulfuric acid for a period of 14 days. Evaluation of its resistance in terms of compressive strength and microstructural behavior were carried out by using ELE ADR 3000 and SEM, respectively.FindingsThe paper shows that geopolymer cement with 1 wt.% addition of nano-silica were highly resistant to sulfuric and hydrochloric acid. The strength increase was contributed by the densification of the microstructure with the addition of nano-silica.Originality/valueThis paper investigates the mechanical property and microstructure behavior of emerging geopolymer cement due to hydrochloric and sulfuric acids exposure. The results provide potential application of fly ash-based geopolymer cement as oil well cementing.


2011 ◽  
Vol 135-136 ◽  
pp. 484-486
Author(s):  
Xiao Wei Hou ◽  
Shi Bin Liu ◽  
Jie Chang

The main function of the substrate is to sustain and improve the performance of the thin-film. The property and surface configuration of the substrate material have a huge influence on the characteristics of the thin-film. Fabrication of substrate for the micro-transformer can choose a variety of materials, including the silicon, metal, glass, quartz, ceramics, plastics, polymer, etc. Different materials used as substrate have different effects on voltage gain and insertion loss of the transformer. At present, the silicon is used in most cases for its excellent properties. However, it is increasingly found that there exists some problems to gain better performance, such as the parasitic effect. And so, to employ other materials is essential. This paper discusses the effects induced by using different substrate materials. Through the analysis, a general cognition about how to choose the materials can be obtained, which is helpful to design and fabrication of the micro-transformer.


1991 ◽  
Vol 48 (9) ◽  
pp. 414-416
Author(s):  
Yu. V. Zemlyanskii ◽  
S. M. Itkin

2004 ◽  
Vol 851 ◽  
Author(s):  
Sandra J. Tomczak ◽  
Darrell Marchant ◽  
Steve Svejda ◽  
Timothy K. Minton ◽  
Amy L. Brunsvold ◽  
...  

ABSTRACTKapton polyimide (PI) is widely used on the exterior of spacecraft as a thermal insulator. Atomic oxygen (AO) in lower earth orbit (LEO) causes severe degradation in Kapton resulting in reduced spacecraft lifetimes. One solution is to coat the polymer surface with SiO2 since this coating is known to impart remarkable oxidation resistance. Imperfections in the SiO2 application process and micrometeoroid / debris impact in orbit damage the SiO2 coating, leading to erosion of Kapton.A self passivating, self healing silica layer protecting underlying Kapton upon exposure to AO may result from the nanodispersion of silicon and oxygen within the polymer matrix. Polyhedral oligomeric silsesquioxane (POSS) is composed of an inorganic cage structure with a 2:3 Si:O ratio surrounded by tailorable organic groups and is a possible delivery system for nanodispersed silica. A POSS dianiline was copolymerized with pyromellitic dianhydride and 4, 4′-oxydianiline resulting in POSS Kapton Polyimide. The glass transition temperature (Tg) of 5 to 25 weight % POSS Polyimide was determined to be slightly lower, 5 – 10 %, than that of unmodified polyimides (414 °C). Furthermore the room temperature modulus of polyimide is unaffected by POSS, and the modulus at temperatures greater than the Tg of the polyimide is doubled by the incorporation of 20 wt % POSS.To simulate LEO conditions, POSS PI films underwent exposure to a hyperthermal O-atom beam. Surface analysis of exposed and unexposed films conducted with X-ray photoelectron spectroscopy, atomic force microscopy, and surface profilometry support the formation of a SiO2 self healing passivation layer upon AO exposure. This is exemplified by erosion rates of 10 and 20 weight % POSS PI samples which were 3.7 and 0.98 percent, respectively, of the erosion rate for Kapton H at a fluence of 8.5 × 1020 O atoms cm-2. This data corresponds to an erosion yield for 10 wt % POSS PI of 4.8 % of Kapton H. In a separate exposure, at a fluence of 7.33 × 1020 O atoms cm-2, 25 wt % POSS Polyimide showed the erosion yield of about 1.1 % of that of Kapton H. Also, recently at a lower fluence of 2.03 × 1020 O atoms cm-2, in going from 20 to 25 wt % POSS PI the erosion was decreased by a factor of 2 with an erosion yield too minor to be measured for 25 wt % POSS PI.


Sign in / Sign up

Export Citation Format

Share Document