PHOTOLUMINESCENCE OF NANOCRYSTALLINE CdTe, INTRODUCED INTO POROUS SILICON

2021 ◽  
Vol 56 ◽  
pp. 123-128
Author(s):  
G. A. Pashchenko ◽  

A method of colloidal synthesis of monodisperse nanocrystals (NC) with high stability, narrow bands of photoluminescence (PL) and high quantum yield has been developed. The process of colloidal synthesis took place at room temperature and for the passivation of NC used a variety of surfactants. The surface of NC CdTe was modified by introducing them into a matrix, organic or crystalline. In our case, the matrix was porous Silicon (PS), that is a composite structure was formed on the basis of the matrix and NC semiconductor. Nanocomposite structures of PS – NC CdTe were obtained by introducing colloidal solutions of NC CdTe into the solid matrix of PS and subsequent processing at a certain temperature regime. The photoluminescent properties of a composite system in which the matrix is microcrystalline PS and the second component is NC CdTe deposited from a colloidal solution of NC CdTe have been studied. The peculiarity of this system is that both components have PL of different intensities.The large difference in PL intensities and different positions of the radiation bands allowed, comparing the PL spectra of the colloidal solution of NC CdTe, PS and NC CdTe – PS at different stages of introduction of CdTe nanoparticles into the porous Silicon surface, to identify the interaction and mutual influence of the two constituent materials. The main disadvantages of the method are its relative novelty, which leads to the need for empirical selection of some parameters of the synthesis. The planned change of properties of PS and colloidal solutions of NC CdTe by variation of technological methods of synthesis and processing methods will allow to control the physical properties of this composite system and use it to develop new principles of design and creation of new generation sensor devices.

2019 ◽  
Vol 286 ◽  
pp. 40-48
Author(s):  
Xairo Leon ◽  
Edith Osorio ◽  
Rene Pérez-Cuapio ◽  
Carlos Bueno ◽  
Mauricio Pacio ◽  
...  

In this work, core-shell ZnO@SiO2nanoparticles (NPs) were infiltrated into a macro/meso-porous silicon (PS) structure, to study its luminescent properties. The core-shell ZnO@SiO2NPs were obtained by colloidal synthesis. The core-shell ZnO@SiO2NP was 5 nm in diameter. The macro/meso-PS structure was made in two steps: we obtained the macroporous silicon (macro-PS) layer fist and the mesoporous silicon (meso-PS) layer second. This process was conducted using different electrolyte solutions, and the change of electrolyte led to a decrease in the special charge region over the wall macro-PS layer; this allowed the building of the meso-PS layers on the walls and the bottom of the macro-PS layer. The SEM results show the cross-section of the macro/meso-PS structure with and without core-shell ZnO@SiO2NPs. These SEM images show that the core-shell ZnO@SiO2NPs that infiltrated into macro/meso-PS structure were more efficiently bonded over all the porous walls. The core-shell ZnO@SiO2PL interacted with the macro/meso-PS structure, modifying its PL intensity and controlling a shift toward a lower wavelength.


Author(s):  
Gerard A. Ateshian ◽  
Steve Maas ◽  
Jeffrey A. Weiss

Many biological soft tissues exhibit a charged solid matrix, most often due to the presence of proteoglycans enmeshed within the matrix. The predominant solute content of the interstitial fluid of these tissues consists of the monovalent counter-ions Na+ and Cl−. The electrical interactions between the mobile ion species and fixed charge density of the solid matrix produces an array of mechano-electrochemical effects, including Donnan osmotic swelling, and streaming and diffusion potentials and currents. These phenomena have been successfully modeled by the triphasic theory of Lai et al. [1], which is based on the framework of mixture theory [2]. Other similar frameworks have also been proposed [3, 4]. The equations of triphasic theory are nonlinear, even in the range of infinitesimal strains. Therefore, numerical schemes are generally needed to solve all but the simplest problems using this framework.


Metals ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 874
Author(s):  
Andrey A. Tsarkov ◽  
Vladislav Yu. Zadorozhnyy ◽  
Alexey N. Solonin ◽  
Dmitri V. Louzguine-Luzgin

High-strength crystalline/amorphous composites materials based on (Ti-Ni)-(Cu-Zr) system were developed. The optimal concentrations of additional alloying elements Al, Fe, and Cr were obtained. Structural investigations were carried out using X-ray diffraction equipment (XRD) and scanning electron microscope (SEM) with an energy-dispersive X-ray module (EDX). It was found that additives of aluminum and chromium up to 5 at% dissolve well into the solid matrix solution of the NiTi phase. At a concentration of 5 at%, the precipitation of the unfavorable NiTi2 phase occurs, which, as a result, leads to a dramatic decrease in ductility. Iron dissolves very well in the solid solution of the matrix phase due to chemical affinity with nickel. The addition of iron does not cause the precipitation of the NiTi2 phase in the concentration range of 0–8 at%, but with an increase in concentration, this leads to a decrease in the mechanical properties of the alloy. The mechanical behavior of alloys was studied in compression test conditions on a universal testing machine. The developed alloys have a good combination of strength and ductility due to their dual-phase structure. It was shown that additional alloying elements lead to a complete suppression of the martensitic transformation in the alloys.


1930 ◽  
Vol 3 (3) ◽  
pp. 516-518 ◽  
Author(s):  
H. Staudinger ◽  
E. O. Leupold

Abstract Varied views prevail as to the structure of the colloidal particles present in a rubber solution. According to Harries, Pummerer, and many others, these colloidal particles are formed through the association or aggregation of smaller molecules. According to Meyer and Mark they have a micellar structure, the micelles forming through the apposition of main valence chains. On the other hand, it was assumed by one of the present authors that the elementary particles in a colloidal solution of rubber are identical with the rubber molecules, these large, especially labile molecules being called macromolecules. Thus the existence of much larger molecules than any hitherto known was postulated. This view was confirmed by the conversion of rubber to hydro-rubber capable of forming colloidal solutions, and also by the pyrogenic decomposition of rubber. In order to decide definitely between the two conceptions, the stability of the colloidal particle in a rubber solution was studied by means of viscosity measurements at various temperatures as was done in the case of the polystyrols. If these colloidal particles form aggregates or if they have a micellar structure, they should decrease in size with increase in temperature, and this change should be evidenced by a diminution of the specific viscosity of the colloidal solution. On the other hand, if such a solution is composed of molecules, the specific viscosity at various temperatures is the same, provided that the molecules are not decomposed at higher temperatures. This line of research led to an explanation of the constitution of the colloidal particles in a polystyrol solution and was now applied to balata, since the latter is especially easily purified.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Rahul Kumar ◽  
Leonardo Binetti ◽  
T. Hien Nguyen ◽  
Lourdes S. M. Alwis ◽  
Arti Agrawal ◽  
...  

AbstractKnowledge of the distribution of the aspect ratios (ARs) in a chemically-synthesized colloidal solution of Gold Nano Rods (GNRs) is an important measure in determining the quality of synthesis, and consequently the performance of the GNRs generated for various applications. In this work, an algorithm has been developed based on the Bellman Principle of Optimality to readily determine the AR distribution of synthesized GNRs in colloidal solutions. This is achieved by theoretically fitting the longitudinal plasmon resonance of GNRs obtained by UV-visible spectroscopy. The AR distribution obtained from the use of the algorithm developed have shown good agreement with those theoretically generated one as well as with the previously reported results. After bench-marking, the algorithm has been applied to determine the mean and standard deviation of the AR distribution of two GNRs solutions synthesized and examined in this work. The comparison with experimentally derived results from the use of expensive Transmission Electron Microscopic images and Dynamic Light Scattering technique shows that the algorithm developed offers a fast and thus potentially cost-effective solution to determine the quality of the synthesized GNRs specifically needed for many potential applications for the advanced sensor systems.


2014 ◽  
Vol 9 (1) ◽  
Author(s):  
José Alberto Luna López ◽  
Abel Garzón Román ◽  
Estela Gómez Barojas ◽  
JF Flores Gracia ◽  
Javier Martínez Juárez ◽  
...  

2004 ◽  
Vol 449-452 ◽  
pp. 765-768
Author(s):  
Chong Sung Park ◽  
Hyun Seok Hong ◽  
Myung Ho Kim ◽  
Chong Mu Lee

A new approach for the CTE on the basis of Ashelby.s cutting and welding process was made for the analysis of the thermal expansion behaviors of Al-Si alloys and composites. In this theoretical approach, it was considered that relaxation of residual stress could create an elastoplastic zone in the matrix around a particle during cooling. A comparison of the measured CTEs with the calculated ones for the Al-Si-SiCp and Al-Si-Al2O3 composite systems was performed in terms of the volume percent and the size of reinforced phases. The calculated results revealed that the linear CTE of the both composite depends on the size of the reinforce phases, especially at the composite systems with a low volume percent of the reinforce phases. The increase in the volume percentages of Al2O3, SiCp and Si phase lowers the linear CTEs of the systems. The measured CTEs was deviated less than about ten percents from the calculated ones at composites with a high volume percent. The deviations of the CTEs of reinforced phases are about 4 - 6 vol% from real composite systems.


1996 ◽  
Vol 80 (1) ◽  
pp. 490-493 ◽  
Author(s):  
Peng Li ◽  
Qingshan Li ◽  
Yurong Ma ◽  
Rongchuan Fang

Sign in / Sign up

Export Citation Format

Share Document