scholarly journals MATHEMATICAL MODELING AND ANALYSIS OF ELECTROMAGNETIC PROCESSES IN THE THYRISTOR CURRENT REGULATOR SYSTEM - SPECIAL TRANSFORMER INSTALLATION INSTALLATION IN BCF

Author(s):  
P.P. Podeiko ◽  
◽  
V.P. Styazhkin ◽  

Peculiarities of mathematical modeling are considered and electromagnetic processes in the system “thyristor current regulator - special transformer” (TRS-ST) are analyzed. An indirect method for measuring the temperature of a die plate, which is controlled by the primary current of the CT, is proposed. A simulation model of the TRS-ST system has been created, which makes it possible to take into account the nonlinearity of the characteristics of the transformer core material and the nonlinearity of the load resistance to achieve the required accuracy of electromagnetic processes. The results of simulation confirmed the effectiveness of the developed mathematical model as the difference between the curves of transients obtained by modeling and the curves obtained during research on the experimental setup is not more than 5% and allows to further optimize multi-loop control systems with interconnected and nonlinear parameters. Bibl. 9, fig. 13.

2021 ◽  
Vol 13 (4) ◽  
pp. 793
Author(s):  
Guoqiang Jiao ◽  
Shuli Song ◽  
Qinming Chen ◽  
Chao Huang ◽  
Ke Su ◽  
...  

BeiDou global navigation satellite system (BDS) began to provide positioning, navigation, and timing (PNT) services to global users officially on 31 July, 2020. BDS constellations consist of regional (BDS-2) and global navigation satellites (BDS-3). Due to the difference of modulations and characteristics for the BDS-2 and BDS-3 default civil service signals (B1I/B3I) and the increase of new signals (B1C/B2a) for BDS-3, a systemically bias exists in the receiver-end when receiving and processing BDS-2 and BDS-3 signals, which leads to the inter-system bias (ISB) between BDS-2 and BDS-3 on the receiver side. To fully utilize BDS, the BDS-2 and BDS-3 combined precise time and frequency transfer are investigated considering the effect of the ISB. Four kinds of ISB stochastic models are presented, which are ignoring ISB (ISBNO), estimating ISB as random constant (ISBCV), random walk process (ISBRW), and white noise process (ISBWN). The results demonstrate that the datum of receiver clock offsets can be unified and the ISB deduced datum confusion can be avoided by estimating the ISB. The ISBCV and ISBRW models are superior to ISBWN. For the BDS-2 and BDS-3 combined precise time and frequency transfer using ISBNO, ISBCV, ISBRW, and ISBWN, the stability of clock differences of old signals can be enhanced by 20.18%, 23.89%, 23.96%, and 11.46% over BDS-2-only, respectively. For new signals, the enhancements are −50.77%, 20.22%, 17.53%, and −3.69%, respectively. Moreover, ISBCV and ISBRW models have the better frequency transfer stability. Consequently, we recommended the optimal ISBCV or suboptimal ISBRW model for BDS-2 and BDS-3 combined precise time and frequency transfer when processing the old as well as the new signals.


2021 ◽  
Vol 11 (13) ◽  
pp. 5914
Author(s):  
Daniel Reyes-Uquillas ◽  
Tesheng Hsiao

In this article, we aim to achieve manual guidance of a robot manipulator to perform tasks that require strict path following and would benefit from collaboration with a human to guide the motion. The robot can be used as a tool to increase the accuracy of a human operator while remaining compliant with the human instructions. We propose a dual-loop control structure where the outer admittance control loop allows the robot to be compliant along a path considering the projection of the external force to the tangential-normal-binormal (TNB) frame associated with the path. The inner motion control loop is designed based on a modified sliding mode control (SMC) law. We evaluate the system behavior to forces applied from different directions to the end-effector of a 6-DOF industrial robot in a linear motion test. Next, a second test using a 3D path as a tracking task is conducted, where we specify three interaction types: free motion (FM), force-applied motion (FAM), and combined motion with virtual forces (CVF). Results show that the difference of root mean square error (RMSE) among the cases is less than 0.1 mm, which proves the feasibility of applying this method for various path-tracking applications in compliant human–robot collaboration.


2021 ◽  
Vol 31 (14) ◽  
Author(s):  
Irina Bashkirtseva ◽  
Tatyana Perevalova ◽  
Lev Ryashko

A problem of the mathematical modeling and analysis of noise-induced transformations of complex oscillatory regimes in hierarchical population systems is considered. As a key example, we use a three-dimensional food chain dynamical model of the interacting prey, predator, and top predator. We perform a comparative study of the impacts of random fluctuations on three key biological parameters of prey growth, predator mortality, and the top predator growth. A detailed investigation of the stochastic excitement, noise-induced transition from order to chaos, and various scenarios of extinction is carried out. Constructive abilities of the semi-analytical method of confidence domains in the analysis of the noise-induced extinction are demonstrated.


Author(s):  
M.O. Smirnov ◽  
A.M. Zolotov ◽  
A.M. Tyukhtyaev

Wide spread in the values of the elasticity modulus of the titanium VT6 alloy and its analogs Ti—6Al—4V, Ti—6Al—4V ELI at room temperature and at elevated temperatures is revealed аs result of the literature sources analysis. The data are ambiguous, the available temperature dependences of the elasticity modulus have very different values starting from the temperature T l 500 °C. Mathematical modeling of the warping process is carried out on the example of figurine-shaped stamped blank of turbine blade using various dependences of the elasticity modulus on temperature. Cases of warping during cooling of stamped blank after cooling-down in stamp with and without cumulative deformation are considered. The difference in the course of thermal deformations during the cooling of the workpiece is obtained using different temperature dependences of the elasticity modulus. The presence of preliminary deformation increases the warping of the workpieces.


BIOMATH ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 2106147
Author(s):  
Debkumar Pal ◽  
D Ghosh ◽  
P K Santra ◽  
G S Mahapatra

This paper presents the current situation and how to minimize its effect in India through a mathematical model of infectious Coronavirus disease (COVID-19). This model consists of six compartments to population classes consisting of susceptible, exposed, home quarantined, government quarantined, infected individuals in treatment, and recovered class. The basic reproduction number is calculated, and the stabilities of the proposed model at the disease-free equilibrium and endemic equilibrium are observed. The next crucial treatment control of the Covid-19 epidemic model is presented in India's situation. An objective function is considered by incorporating the optimal infected individuals and the cost of necessary treatment. Finally, optimal control is achieved that minimizes our anticipated objective function. Numerical observations are presented utilizing MATLAB software to demonstrate the consistency of present-day representation from a realistic standpoint.


Sign in / Sign up

Export Citation Format

Share Document