Effect of titanium alloys elasticity modulus on warping of stamped blanks during cooling

Author(s):  
M.O. Smirnov ◽  
A.M. Zolotov ◽  
A.M. Tyukhtyaev

Wide spread in the values of the elasticity modulus of the titanium VT6 alloy and its analogs Ti—6Al—4V, Ti—6Al—4V ELI at room temperature and at elevated temperatures is revealed аs result of the literature sources analysis. The data are ambiguous, the available temperature dependences of the elasticity modulus have very different values starting from the temperature T l 500 °C. Mathematical modeling of the warping process is carried out on the example of figurine-shaped stamped blank of turbine blade using various dependences of the elasticity modulus on temperature. Cases of warping during cooling of stamped blank after cooling-down in stamp with and without cumulative deformation are considered. The difference in the course of thermal deformations during the cooling of the workpiece is obtained using different temperature dependences of the elasticity modulus. The presence of preliminary deformation increases the warping of the workpieces.

Author(s):  
Haiyang Fan ◽  
Yahui Liu ◽  
Shoufeng Yang

Ti–6Al–2Sn–4Zr–2Mo (Ti-6242), a near-[Formula: see text] titanium alloy explicitly designed for high-temperature applications, consists of a martensitic structure after selective laser melting (SLM). However, martensite is thermally unstable and thus adverse to the long-term service at high temperatures. Hence, understanding martensite decomposition is a high priority for seeking post-heat treatment for SLMed Ti-6242. Besides, compared to the room-temperature titanium alloys like Ti–6Al–4V, aging treatment is indispensable to high-temperature near-[Formula: see text] titanium alloys so that their microstructures and mechanical properties are pre-stabilized before working at elevated temperatures. Therefore, the aging response of the material is another concern of this study. To elaborate the two concerns, SLMed Ti-6242 was first isothermally annealed at 650[Formula: see text]C and then water-quenched to room temperature, followed by standard aging at 595[Formula: see text]C. The microstructure analysis revealed a temperature-dependent martensite decomposition, which proceeded sluggishly at [Formula: see text]C despite a long duration but rapidly transformed into lamellar [Formula: see text] above the martensite transition zone (770[Formula: see text]C). As heating to [Formula: see text]C), it produced a coarse microstructure containing new martensites formed in water quenching. The subsequent mechanical testing indicated that SLM-built Ti-6242 is excellent in terms of both room- and high-temperature tensile properties, with around 1400 MPa (UTS)[Formula: see text]5% elongation and 1150 MPa (UTS)[Formula: see text]10% elongation, respectively. However, the combination of water quenching and aging embrittled the as-built material severely.


Tribologia ◽  
2018 ◽  
Vol 278 (2) ◽  
pp. 51-56
Author(s):  
Marcin KOT ◽  
Jurgen LACKNER ◽  
Łukasz MAJOR ◽  
Roman MAJOR ◽  
Grzegorz WIĄZANIA ◽  
...  

One of the latest ideas in surface engineering is the deposition of new kinds of coatings, called adaptive or chameleon. Based on literature review, the different mechanisms of the adaption of such coatings depend on the applied ranges of temperature and loads were compared. Moreover, the main directions of development of adaptive coatings were also presented. The paper includes results of single coatings, a-C and MoS2, as well composite coatings, a-C/MoS2, in which the mechanism of adaptation was expected. Indentation tests were carried out to determine nanohardness and elasticity modulus. The adhesion of coatings to steel substrates was studied by scratch testing, and tribological properties were studied using a high-temperature ball-ondisc tribometer and tests results conducted at room temperature and at elevated temperatures up to 300°C. Results showed that composite coating, a-C/MoS2, can work over the entire range of temperatures with a low coefficient of friction 0.02–0.1 and wear index of 0.07–0.47·10–6 mm3/Nm . Whereas, a-C and MoS2 coatings exhibited a low coefficient of friction and a high wear resistance at low and high temperatures, respectively.


Author(s):  
J. I. Pankove ◽  
M. Leksono ◽  
S. S. Chang ◽  
C. Walker ◽  
B. Van Zeghbroeck

A new heterobipolar transistor was made with the wide bandgap semicon-ductors gallium nitride (GaN) and silicon carbide (SiC). The heterojunction allows high injection efficiency, even at elevated temperatures. A record current gain of ten million was obtained at room temperature, decreasing to 100 at 535°C. An Arrhenius plot of current gain vs 1/T yields an activation energy of 0.43 eV that corresponds to the valence band barrier blocking the escape of holes from the base to the emitter. This activation energy is approximately equal to the difference of energy gaps between emitter and base. This Transistor can operate at high power without cooling. A power density of 30 KW/cm2 was sustained.


Author(s):  
Ernest L. Hall ◽  
J. B. Vander Sande

The present paper describes research on the mechanical properties and related dislocation structure of CdTe, a II-VI semiconductor compound with a wide range of uses in electrical and optical devices. At room temperature CdTe exhibits little plasticity and at the same time relatively low strength and hardness. The mechanical behavior of CdTe was examined at elevated temperatures with the goal of understanding plastic flow in this material and eventually improving the room temperature properties. Several samples of single crystal CdTe of identical size and crystallographic orientation were deformed in compression at 300°C to various levels of total strain. A resolved shear stress vs. compressive glide strain curve (Figure la) was derived from the results of the tests and the knowledge of the sample orientation.


Author(s):  
G. M. Michal ◽  
T. K. Glasgow ◽  
T. J. Moore

Large additions of B to Fe-Ni alloys can lead to the formation of an amorphous structure, if the alloy is rapidly cooled from the liquid state to room temperature. Isothermal aging of such structures at elevated temperatures causes crystallization to occur. Commonly such crystallization pro ceeds by the nucleation and growth of spherulites which are spherical crystalline bodies of radiating crystal fibers. Spherulite features were found in the present study in a rapidly solidified alloy that was fully crysstalline as-cast. This alloy was part of a program to develop an austenitic steel for elevated temperature applications by strengthening it with TiB2. The alloy contained a relatively large percentage of B, not to induce an amorphous structure, but only as a consequence of trying to obtain a large volume fracture of TiB2 in the completely processed alloy. The observation of spherulitic features in this alloy is described herein. Utilization of the large range of useful magnifications obtainable in a modern TEM, when a suitably thinned foil is available, was a key element in this analysis.


Alloy Digest ◽  
1981 ◽  
Vol 30 (6) ◽  

Abstract FANSTEEL 85 METAL is a columbium-base alloy characterized by good fabricability at room temperature, good weldability and a good combination of creep strength and oxidation resistance at elevated temperatures. Its applications include missile and rocket components and many other high-temperature parts. This datasheet provides information on composition, physical properties, microstructure, hardness, elasticity, tensile properties, and bend strength as well as creep. It also includes information on low and high temperature performance as well as forming, heat treating, machining, joining, and surface treatment. Filing Code: Cb-7. Producer or source: Fansteel Metallurgical Corporation. Originally published December 1963, revised June 1981.


Author(s):  
Alexey V. Kavokin ◽  
Jeremy J. Baumberg ◽  
Guillaume Malpuech ◽  
Fabrice P. Laussy

In this Chapter we address the physics of Bose-Einstein condensation and its implications to a driven-dissipative system such as the polariton laser. We discuss the dynamics of exciton-polaritons non-resonantly pumped within a microcavity in the strong coupling regime. It is shown how the stimulated scattering of exciton-polaritons leads to formation of bosonic condensates that may be stable at elevated temperatures, including room temperature.


2021 ◽  
pp. 009524432110203
Author(s):  
Sudhir Bafna

It is often necessary to assess the effect of aging at room temperature over years/decades for hardware containing elastomeric components such as oring seals or shock isolators. In order to determine this effect, accelerated oven aging at elevated temperatures is pursued. When doing so, it is vital that the degradation mechanism still be representative of that prevalent at room temperature. This places an upper limit on the elevated oven temperature, which in turn, increases the dwell time in the oven. As a result, the oven dwell time can run into months, if not years, something that is not realistically feasible due to resource/schedule constraints in industry. Measuring activation energy (Ea) of elastomer aging by test methods such as tensile strength or elongation, compression set, modulus, oxygen consumption, etc. is expensive and time consuming. Use of kinetics of weight loss by ThermoGravimetric Analysis (TGA) using the Ozawa/Flynn/Wall method per ASTM E1641 is an attractive option (especially due to the availability of commercial instrumentation with software to make the required measurements and calculations) and is widely used. There is no fundamental scientific reason why the kinetics of weight loss at elevated temperatures should correlate to the kinetics of loss of mechanical properties over years/decades at room temperature. Ea obtained by high temperature weight loss is almost always significantly higher than that obtained by measurements of mechanical properties or oxygen consumption over extended periods at much lower temperatures. In this paper, data on five different elastomer types (butyl, nitrile, EPDM, polychloroprene and fluorocarbon) are presented to prove that point. Thus, use of Ea determined by weight loss by TGA tends to give unrealistically high values, which in turn, will lead to incorrectly high predictions of storage life at room temperature.


Sign in / Sign up

Export Citation Format

Share Document