scholarly journals Method of X-Ray Diffraction Data Processing for Multiphase Materials with Low Phase Contents

2019 ◽  
Vol 64 (9) ◽  
pp. 870 ◽  
Author(s):  
A. D. Scorbun ◽  
S. V. Gabielkov ◽  
I. V. Zhyganiuk ◽  
V. G. Kudlai ◽  
P. E. Parkhomchuk ◽  
...  

Amorphous, glass, and glass-ceramic materials practically always include a significant number (more than eight) of crystalline phases, with the contents of the latter ranging from a few wt.% to several hundredths or tenths of wt.%. The study of such materials using the method of X-ray phase analysis faces difficulties, when determining the phase structure. In this work, we will develop a method for the analysis of the diffraction patterns of such materials, when diffraction patterns include X-ray lines, whose intensities are at the noise level. The identification of lines is based on the search for correlations between the experimental and test lines and the verification of the coincidence making use of statistical methods (computer statistics). The method is tested on the specimens of a-quartz, which are often used as standard ones, and applied to analyze lava-like fuel-containing materials from the destroyed Chornobyl NPP Unit 4. It is shown that the developed technique allows X-ray lines to be identified, if the contents of separate phases is not less than 0.1 wt.%. The method also significantly enhances a capability to determine the phase contents quantitatively on the basis of lines with low intensities.

2014 ◽  
Vol 953-954 ◽  
pp. 1643-1648
Author(s):  
Hang Li ◽  
Li Qiang Liu ◽  
Min Jing ◽  
Zhi Gang Wang ◽  
Zheng Wang ◽  
...  

The glass-ceramic materials were produced from silicon slag with the addition of talcum powder and TiO2 by melting them in an electrically heated furnace and subsequent heat treatment at various temperatures and time. The microstructure and crystallization behaviors of glass–ceramics have been investigated by differential thermal analysis (DTA), X-ray diffraction (XRD) and scanning electron microscopy (SEM). With the increase of silicon slag content, the sequent precipitate phase is: krinovite Na (Mg1.9Fe0.1)Cr (SiO)3O, pseudobrookite Fe2TiO5 and anorthite Ca (Al2Si2O8), enstatite ferroan MgFeSi2O6, and albite Na (AlSi3O8). The shape of crystals was spherical grains. The glass–ceramic sample obtained from 70% silicon slag had the excellent mechanical performance including flexural strength of 200.45 MPa and Vickers micro hardness of 909.72 MPa.


2012 ◽  
Vol 1373 ◽  
Author(s):  
M. Garza-García ◽  
J. López-Cuevas ◽  
C.A. Gutiérrez-Chavarría ◽  
N. Piedad-Sánchez ◽  
E. Camporredondo-Saucedo ◽  
...  

ABSTRACTThe density, Vickers microhardness and crystallization fraction of glass-ceramic materials synthesized from parent glasses are determined in which CaO is gradually substituted by SrO. The chemical composition (in mol.%) of the parent glasses is 54SiO2-(23-X)CaO-12MgO-5Al2O3-6CaF2-XSrO, where X is the employed CaO substitution level (X = 0, 3, 6 and 9 mol.%, with X = 0 corresponding to the reference material). In order to determine the type of crystallization occurring in the glass-ceramic samples, as well as the crystalline phases formed in them, these are characterized by both Scanning Electron Microscopy (SEM/EDS) and X-Ray Diffraction (XRD). Independently of the CaO substitution level employed, the glass-ceramics show the formation of a solid solution corresponding to diopside-type pyroxene, with chemical formula Ca(Mg,Al)(Al,Si)2O6, as a single crystalline phase. The synthesized glass-ceramic materials with the reference composition show the highest Vickers microhardness and crystallization fraction, as well as the lowest density.


1988 ◽  
Vol 32 ◽  
pp. 561-567
Author(s):  
D. B. Sullenger ◽  
J. S. Cantrell ◽  
T. A. Beiter ◽  
D. W. Tomlin

For several years we have prepared and submitted a variety of quality powder x-ray diffraction patterns to the International Centre for Diffraction Data (ICDD) for inclusion as reference standards in their Powder Diffraction File (PDF). Patterns submitted and/or currently under development include metal hydrides (inorganics), flavanoids and related compounds (organics), organic compounds involved in pollution (e.g., dioxins), explosives (organics and metal organics) and glass-ceramic phases (inorganics).


10.30544/223 ◽  
2016 ◽  
Vol 22 (4) ◽  
pp. 285-302
Author(s):  
As'mau Ibrahim Gebi ◽  
Shehu Aliyu Yaro ◽  
Malik Abdulwahab ◽  
Mamuda Rayyan Dodo

In a bid to address environmental challenges associated with the management of waste Coca cola glass bottle, this study set out to develop glass ceramic materials using waste coca cola glass bottles and magnesite from Sakatsimta in Adamawa state. A reagent grade chrome (coloring agent) were used to modify the composition of the coca cola glass bottle;  X-ray fluorescence(XRF), X-ray diffraction (XRD) and Thermo gravimetric analysis (TGA) were used to characterize raw materials, four batches GC-1= Coca cola glass frit +1%Cr2O3, GC-2=97% Coca cola glass frit+ 2% magnesite+1%Cr2O3, GC-3=95% Coca cola glass frit+ 4%magnesite+1%Cr2O3, GC-4=93%Coca cola glass frit+ 6%magnesite+ 1%Cr2O3 were formulated and prepared. Thermal Gradient Analysis (TGA) results were used as a guide in selection of three temperatures (7000C, 7500C and 8000C) used for the study, three particle sizes -106+75, -75+53, -53µm and 2 hr sintering time were also used, the sinter crystallization route of glass ceramic production was adopted. The samples were characterized by X-ray diffraction (XRD) and Scanning Electron Microscope (SEM), the density, porosity, hardness and flexural strength of the resulting glass ceramics were also measured. The resulting glass ceramic materials composed mainly of wollastonite, diopside and anorthite phases depending on composition as indicated by XRD and SEM, the density of the samples increased with increasing sintering temperature and decreasing particle size. The porosity is minimal and it decreases with increasing sintering temperature and decreasing particle size. The obtained glass ceramic materials possess appreciable hardness and flexural strength with GC-3 and GC-4 having the best combination of both properties.


2003 ◽  
Vol 68 (6) ◽  
pp. 505-510 ◽  
Author(s):  
Branko Matovic ◽  
Snezana Boskovic ◽  
Mihovil Logar

Local and conventional raw materials?massive basalt from the Vrelo locality on Kopaonik mountain?have been used as starting materials to test their suitability for the production of glass-ceramics. Crystallization phenomena of glasses of the fused basalt rocks were studied by X-ray phase analysis optical microscopy and other techniques. Various heat treatments were used and their influences, on controlling the microstructures and properties of the products were studied with the aim of developing high strength glass-ceramic materials. Diopside CaMg(SiO3)2 and hypersthene ((Mg,Fe)SiO3) were identifies as the crystalline phases. The final products contained considerable amounts of a glassy phase. The crystalline size was in range of 8?480 ?m with plate or needle shape. Microhardness, crashing strength and wears resistence of the glass-ceramics ranged from 6.5?7.5, from 2000?6300 kg/cm2 and from 0.1?0.2 g/cm, respectively.


Cerâmica ◽  
2020 ◽  
Vol 66 (380) ◽  
pp. 413-420
Author(s):  
L. M. S. e Silva ◽  
R. S. Magalhães ◽  
W. C. Macedo ◽  
G. T. A. Santos ◽  
A. E. S. Albas ◽  
...  

Abstract Recycling has been pointed out as an alternative to the disposal of waste materials in industrial landfills. In the present study, the transformation of residues (discarded foundry sand - DFS, grits, and lime mud) in glass-ceramic materials is shown. The glasses were obtained by the melting/cooling method. The precursor materials, glasses, and glass-ceramics were characterized by X-ray diffraction (XRD), X-ray fluorescence (XRF), and differential scanning calorimetry/thermal gravimetric analysis (DSC/TGA). The glassy materials were milled, pelleted, and thermally treated at the crystallization temperatures given by DSC data to obtain the glass-ceramics (885, 961, and 1090 ºC). The main formed phases were cristobalite, α-wollastonite (parawollastonite), and β-wollastonite (pseudowollastonite). The glass-ceramics showed very low water absorption and apparent porosity (0.26 to 0.88 wt% and 0.66 to 1.77 vol%, respectively). The results confirmed that the studied residues can be used as raw materials for the manufacture of vitreous and glass-ceramic materials.


2014 ◽  
Vol 21 (6) ◽  
pp. 1378-1383 ◽  
Author(s):  
Yuki Sekiguchi ◽  
Masaki Yamamoto ◽  
Tomotaka Oroguchi ◽  
Yuki Takayama ◽  
Shigeyuki Suzuki ◽  
...  

Using our custom-made diffraction apparatus KOTOBUKI-1 and two multiport CCD detectors, cryogenic coherent X-ray diffraction imaging experiments have been undertaken at the SPring-8 Angstrom Compact free electron LAser (SACLA) facility. To efficiently perform experiments and data processing, two software suites with user-friendly graphical user interfaces have been developed. The first is a program suite namedIDATEN, which was developed to easily conduct four procedures during experiments: aligning KOTOBUKI-1, loading a flash-cooled sample into the cryogenic goniometer stage inside the vacuum chamber of KOTOBUKI-1, adjusting the sample position with respect to the X-ray beam using a pair of telescopes, and collecting diffraction data by raster scanning the sample with X-ray pulses. NamedG-SITENNO, the other suite is an automated version of the originalSITENNOsuite, which was designed for processing diffraction data. These user-friendly software suites are now indispensable for collecting a large number of diffraction patterns and for processing the diffraction patterns immediately after collecting data within a limited beam time.


2014 ◽  
Vol 950 ◽  
pp. 48-52
Author(s):  
De Gui Li ◽  
Ming Qin ◽  
Liu Qing Liang ◽  
Zhao Lu ◽  
Shu Hui Liu ◽  
...  

The Al2M3Y(M=Cu, Ni) compound was synthesized by arc melting under argon atmosphere. The high-quality powder X-ray diffraction data of Al2M3Y have been presented. The refinement of the X-ray diffraction patterns for the Al2M3Y compound show that the Al2M3Y has hexagonal structure, space groupP6/mmm(No.191), with a = b = 5.1618(2) Å, c = 4.1434(1) Å,V= 95.6 Å3,Z= 1,ڑx= 5.7922 g/cm3,F30= 155.5(0.0057, 34), RIR = 2.31 for Al2Cu3Y, and with a = b = 5.0399(1) Å, c = 4.0726(1) Å,V= 89.59 Å3,Z= 1,ڑx= 5.9118 g/cm3,F30= 135.7(0.0072, 30), RIR = 2.54 for Al2Ni3Y.


Sign in / Sign up

Export Citation Format

Share Document