Deposition of Hydrophilic Amorphous Carbon Film with Ether as a Source Molecule and Analysis of its Deposition Reaction

2018 ◽  
Vol 138 (11) ◽  
pp. 538-543
Author(s):  
Masanori Shinohara ◽  
Taisuke Tominaga ◽  
Hayato Shimomura ◽  
Takeshi Ihara ◽  
Yoshihito Yagyu ◽  
...  
Author(s):  
H. Todokoro ◽  
S. Nomura ◽  
T. Komoda

It is interesting to observe polymers at atomic size resolution. Some works have been reported for thorium pyromellitate by using a STEM (1), or a CTEM (2,3). The results showed that this polymer forms a chain in which thorium atoms are arranged. However, the distance between adjacent thorium atoms varies over a wide range (0.4-1.3nm) according to the different authors.The present authors have also observed thorium pyromellitate specimens by means of a field emission STEM, described in reference 4. The specimen was prepared by placing a drop of thorium pyromellitate in 10-3 CH3OH solution onto an amorphous carbon film about 2nm thick. The dark field image is shown in Fig. 1A. Thorium atoms are clearly observed as regular atom rows having a spacing of 0.85nm. This lattice gradually deteriorated by successive observations. The image changed to granular structures, as shown in Fig. 1B, which was taken after four scanning frames.


2007 ◽  
Vol 91 (9) ◽  
pp. 092104 ◽  
Author(s):  
Xili Gao ◽  
Qingzhong Xue ◽  
Lanzhong Hao ◽  
Qun Li ◽  
Qingbin Zheng ◽  
...  

2020 ◽  
Vol 860 ◽  
pp. 190-195
Author(s):  
Irma Septi Ardiani ◽  
Khoirotun Nadiyyah ◽  
Anna Zakiyatul Laila ◽  
Sarayut Tunmee ◽  
Hideki Nakajima ◽  
...  

Amorphous carbon films have been explored and used in a wide variety of applications. With the n-type and p-type amorphous carbon film, it can be used to make p-n junctions for solar cells. This research aims to study the structure of boron- and nitrogen-doped amorphous carbon (a-C:B and a-C:N) films. This research uses the basic material of bio-product from palmyra sugar to form amorphous carbon. Amorphous carbon was synthesized by heating the palmyra sugar at 250°C. The results of XRD showed that the doped films produce an amorphous carbon phase. PES was used to analyze the bonding state of dopants in the sample. B4C, BC3, and BC2O bonds formed in a-C:B, while pyridine and pyrrolic formed in a-C:N.


Sign in / Sign up

Export Citation Format

Share Document