Analysis of IEEJ AGC30 Model Analysis Results using the Evaluation Method for Suppression of Fluctuations in Renewable Energy Output

2020 ◽  
Vol 140 (10) ◽  
pp. 715-723
Author(s):  
Tatsuya Oyama ◽  
Hisashi Kato ◽  
Norikazu Yamaguchi ◽  
Yuichi Tobita ◽  
Hideo Hosogoe ◽  
...  
2019 ◽  
Vol 139 (12) ◽  
pp. 737-745
Author(s):  
Tatsuya Oyama ◽  
Hisashi Kato ◽  
Hiroshi Matsumoto ◽  
Yoichi Mashima ◽  
Hideo Hosogoe

Energies ◽  
2019 ◽  
Vol 12 (15) ◽  
pp. 2870 ◽  
Author(s):  
Jingjing Xue ◽  
Reza Ahmadian ◽  
Roger Falconer

Marine renewable energy, including tidal renewable energy, is one of the less exploited sources of energy that could contribute to energy demand, while reducing greenhouse gas emissions. Amongst several proposals to build tidal range structure (TRS), a tidal lagoon has been proposed for construction in Swansea Bay, in the South West of the UK, but this scheme was recently rejected by the UK government due to the high electricity costs. This decision makes the optimisation of such schemes more important for the future. This study proposes various novel approaches by breaking the operation into small components to optimise the operation of TRS using a widely used 0-D modelling methodology. The approach results in a minimum 10% increase in energy output, without the inclusion of pumping, in comparison to the maximum energy output using a similar operation for all tides. This increase in energy will be approximately 25% more when pumping is included. The optimised operation schemes are used to simulate the lagoon operation using a 2-D model and the differences between the results are highlighted.


Symmetry ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 334 ◽  
Author(s):  
Chia-Nan Wang ◽  
Thanh-Tuan Dang ◽  
Hector Tibo ◽  
Duy-Hung Duong

Climate change and air pollution are among the key drivers of energy transition worldwide. The adoption of renewable resources can act as a peacemaker and give stability regarding the damaging effects of fossil fuels challenging public health as well as the tension made between countries in global prices of oil and gas. Understanding the potential and capabilities to produce renewable energy resources is a crucial pre-requisite for countries to utilize them and to scale up clean and stable sources of electricity generation. This paper presents a hybrid methodology that combines the data envelopment analysis (DEA) Window model, and fuzzy technique for order of preference by similarity to ideal solution (FTOPSIS) in order to evaluate the capabilities of 42 countries in terms of renewable energy production potential. Based on three inputs (population, total energy consumption, and total renewable energy capacity) and two outputs (gross domestic product and total energy production), DEA window analysis chose the list of potential countries, including Norway, United Kingdom, Kuwait, Australia, Netherlands, United Arab Emirates, United States, Japan, Colombia, and Italy. Following that, the FTOPSIS model pointed out the top three countries (United States, Japan, and Australia) that have the greatest capabilities in producing renewable energies based on five main criteria, which are available resources, energy security, technological infrastructure, economic stability, and social acceptance. This paper aims to offer an evaluation method for countries to understand their potential of renewable energy production in designing stimulus packages for a cleaner energy future, thereby accelerating sustainable development.


2019 ◽  

<p>Due to the intermittent and fluctuating nature of wind and other renewable energy sources, their integration into electricity systems requires large-scale and flexible storage systems to ensure uninterrupted power supply and to reduce the percentage of produced energy that is discarded or curtailed. Storage of large quantities of electricity in the form of dynamic energy of water masses by means of coupled reservoirs has been globally recognized as a mature, competitive and reliable technology; it is particularly useful in countries with mountainous terrain, such as Greece. Its application may increase the total energy output (and profit) of coupled wind-hydroelectric systems, without affecting the availability of water resources. Optimization of such renewable energy systems is a very complex, multi-dimensional, non-linear, multi modal, nonconvex and dynamic problem, as the reservoirs, besides hydroelectric power generation, serve many other objectives such as water supply, irrigation and flood mitigation. Moreover, their function should observe constraints such as environmental flow. In this paper we developed a combined simulation and optimization model to maximize the total benefits by integrating wind energy production into a pumped-storage multi-reservoir system, operating either in closed-loop or in open-loop mode. In this process, we have used genetic algorithms as the optimization tool. Our results show that when the operation of the reservoir system is coordinated with the wind farm, the hydroelectricity generation decreases drastically, but the total economical revenue of the system increases by 7.02% when operating in closed-loop and by 7.16% when operating in open-loop mode. We conclude that the hydro-wind coordination can achieve high wind energy penetration to the electricity grid, resulting in increase of the total benefits of the system. Moreover, the open-loop pumped-storage multi-reservoir system seems to have better performance, ability and flexibility to absorb the wind energy decreasing to a lesser extent the hydroelectricity generation, than the closed-loop.</p>


2020 ◽  
Vol 10 (5) ◽  
pp. 1791 ◽  
Author(s):  
Stefan Sattler ◽  
Irene Zluwa ◽  
Doris Österreicher

In urban areas, summer temperatures are continuously increasing, and cities are aiming at implementing measures to mitigate the urban heat island (UHI) effect. Reducing sealed surfaces and adding plants have been shown to be beneficial for urban microclimates. Green roofs are thus a viable alternative to standard roofs made out of materials that completely seal the top layer. However, roofs are, at the same time, also ideal for the integration of photovoltaics (PVs), as they are mostly unshaded. With both applications competing for the same surface area, solutions must be found that symbiotically combine the benefits of vegetation and renewable energy. Using an interdisciplinary study, various designs were developed for prototypical applications to integrate PV systems into rooftop gardens, with a specific focus on retrofitting flat roofs. The prototypes were analyzed and tested based on structural design aspects, suitable plant choices, and energy output. The results showed that the concurrent integration of PVs and green roofs into the same surface area can be achieved with lightweight construction, which is particularly suitable for existing buildings. The system can contribute to much-needed urban renewable energy generation, the mitigation of the UHI effect, and the provision of recreational spaces.


2019 ◽  
Vol 11 (18) ◽  
pp. 4825 ◽  
Author(s):  
Jun Dong ◽  
Shilin Nie ◽  
Hui Huang ◽  
Peiwen Yang ◽  
Anyuan Fu ◽  
...  

Renewable energy resources (RESs) play an important role in the upgrading and transformation of the global energy structure. However, the question of how to improve the utilization efficiency of RESs and reduce greenhouse gas emissions is still a challenge. Combined heating and power (CHP) is one effective solution and has experienced rapid development. Nevertheless, with the large scale of RESs penetrating into the power system, CHP microgrid economic operation faces great challenges. This paper proposes a CHP microgrid system that contains renewable energy with considering economy, the environment, and system flexibility, and the ultimate goal is to minimize system operation cost and carbon dioxide emissions (CO2) cost. Due to the volatility of renewable energy output, the fuzzy C-means (FCM) and clustering comprehensive quality (CCQ) models were first introduced to generate clustering scenarios of the renewable energy output and evaluate the clustering results. In addition, for the sake of improving the flexibility and reliability of the CHP microgrid, this paper considers the battery and integrated energy demand response (IEDR). Moreover, the strategy choices of microgrid operators under the condition of grid-connected and islanded based on environment and interest aspects are also developed, which have rarely been involved in previous studies. Finally, this stochastic optimization problem is transformed into a mixed integer linear programming (MILP), which simplifies the calculation process, and the results show that the operation mode under different conditions will have a great impact on microgrid economic and environmental benefits.


Energies ◽  
2019 ◽  
Vol 12 (14) ◽  
pp. 2639
Author(s):  
Mahelet G. Fikru ◽  
Gregory Gelles ◽  
Ana-Maria Ichim ◽  
Joseph D. Smith

Despite advances in small-scale hybrid renewable energy technologies, there are limited economic frameworks that model the different decisions made by a residential hybrid system owner. We present a comprehensive review of studies that examine the techno-economic feasibility of small-scale hybrid energy systems, and we find that the most common approach is to compare the annualized life-time costs to the expected energy output and choose the system with the lowest cost per output. While practical, this type of benefit–cost analysis misses out on other production and consumption decisions that are simultaneously made when adopting a hybrid energy system. In this paper, we propose a broader and more robust theoretical framework—based on production and utility theory—to illustrate how the production of renewable energy from multiple sources affects energy efficiency, energy services, and energy consumption choices in the residential sector. Finally, we discuss how the model can be applied to guide a hybrid-prosumer’s decision-making in the US residential sector. Examining hybrid renewable energy systems within a solid economic framework makes the study of hybrid energy more accessible to economists, facilitating interdisciplinary collaborations.


Electronics ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 627
Author(s):  
Xiangying Tang ◽  
Yan Hu ◽  
Zhanpeng Chen ◽  
Guangzeng You

The development of renewable energy represented by wind, photovoltaic and hydropower has increased the uncertainty of power systems. In order to ensure the flexible operation of power systems with a high proportion of renewable energy, it is necessary to establish a multi-scenario power system flexibility evaluation method. First, this study uses a modified k-means algorithm to cluster operating scenarios of renewable energy and load to obtain several typical scenarios. Then, flexibility evaluation indices are proposed from three perspectives, including supply and demand balance of the zone, power flow distribution of the zone and transmission capacity between zones. Next, to calculate the flexibility evaluation indices of each scenario—and according to the occurrence probability of each scenario—we multiplied the indices of each scenario by the scenario occurrence probability to obtain comprehensive evaluation indices of all scenarios. Based on the actual historical output data of renewable energy and load of a southern power system in China, a flexibility evaluation was performed on the modified IEEE 14 system and modified IEEE 39 system. The results show that the proposed clustering method and flexibility indices can effectively reflect the flexibility status of the power system.


Sign in / Sign up

Export Citation Format

Share Document