scholarly journals A Novel Simulation Method of PV cell using Field Data

2001 ◽  
Vol 121 (2) ◽  
pp. 262-263 ◽  
Author(s):  
Minwon Park ◽  
Kenji Matsuura ◽  
Masakazu Michihira
Keyword(s):  
Author(s):  
Francisco Torrens ◽  
Gloria Castellano

Algorithms for classification and taxonomy bases on criteria, e.g., information entropy. The feasibility of replacing a given molecule by similar ones in the composition of a complex drug is studied. Some local anaesthetics currently in use are classified using structural properties. In taxonomy the detailed comparison of the sequences of biomolecules, proteins or nucleic acids, allows the reconstruction of a molecular phylogenetic tree. The method is applied to the classifications of (1) indazolols (against Trichomonas vaginalis), (2) fullerenes and fullerite, (3) living and heat-inactivated lactic acid bacteria against cytokines, (4) phylogenesis of avian birds and 1918 influenza virus, (5) local anaesthetics, (6) transdermal-delivery percutaneous enhancers, (7) quantitative structure–activity relationship of anti-human immunodeficiency virus (HIV) compounds, (8) HIV inhibitors, e.g., thiocarbamates, N-aryloxazolidinone-5-carboxamides and styrylquinolines, (9) antimalarial aryltriazolylhydroxamates, (10) N-aryl-N-(3-aryl-1,2,4-oxadiazol-5-yl) amines against prostate cancer, antimitotic 2-phenylindole-3-carbaldehydes against breast cancer and anti-tubulin agents against gastric cancer with indole ring. The entropy contributions may be studied with the equipartition conjecture. It is not within the scope of our simulation method to replace biological tests of drugs or field data in palaeontology, but such simulation methods can be useful to assert priorities in detailed experimental research. Available experimental and field data should be examined by different classification algorithms to reveal possible features of real biological significance.


2002 ◽  
Vol 5 (02) ◽  
pp. 126-134 ◽  
Author(s):  
R.O. Baker ◽  
F. Kuppe ◽  
S. Chugh ◽  
R. Bora ◽  
S. Stojanovic ◽  
...  

Summary Modern streamline-based reservoir simulators are able to account for actual field conditions such as 3D multiphase flow effects, reservoir heterogeneity, gravity, and changing well conditions. A streamline simulator was used to model four field cases, with approximately 400 wells and 150,000 gridblocks. History-match run times were approximately 1 CPU hour per run, with the final history matches completed in approximately 1 month per field. In all field cases, a high percentage of wells were history matched within the first two to three runs. Streamline simulation not only enables a rapid turnaround time for studies, but it also serves as a different tool in resolving each of the studied fields' unique characteristics. The primary reasons for faster history matching of permeability fields using 3D streamline technology as compared to conventional finite-difference (FD) techniques are as follows: Streamlines clearly identify which producer-injector pairs communicate strongly (flow visualization). Streamlines allow the use of a very large number of wells, thereby substantially reducing the uncertainty associated with outer-boundary conditions. Streamline flow paths indicate that idealized drainage patterns do not exist in real fields. It is therefore unrealistic to extract symmetric elements out of a full field. The speed and efficiency of the method allows the solution of fine-scale and/or full-field models with hundreds of wells. The streamline simulator honors the historical total fluid injection and production volumes exactly because there are no drawdown constraints for incompressible problems. The technology allows for easy identification of regions that require modifications to achieve a history match. Streamlines provide new flow information (i.e., well connectivity, drainage volumes, and well allocation factors) that cannot be derived from conventional simulation methods. Introduction In the past, streamline-based flow simulation was quite limited in its application to field data. Emanuel and Milliken1 showed how hybrid streamtube models were used to history match field data rapidly to arrive at both an updated geologic model and a current oil-saturation distribution for input to FD simulations. FD simulators were then used in forecast mode. Recent advances in streamline-based flow simulators have overcome many of the limitations of previous streamline and streamtube methods.2-6 Streamline-based simulators are now fully 3D and account for multiphase gravity and fluid mobility effects as well as compressibility effects. Another key improvement is that the simulator can now account for changing well conditions due to rate changes, infill drilling, producer-injector conversions, and well abandonments. With advances in streamline methods, the technique is rapidly becoming a common tool to assist in the modeling and forecasting of field cases. As this technology has matured, it is becoming available to a larger group of engineers and is no longer confined to research centers. Published case studies using streamline simulators are now appearing from a broad distribution of sources.7–12 Because of the increasing interest in this technology, our first intent in this paper is to outline a methodology for where and how streamline-based simulation fits in the reservoir engineering toolbox. Our second objective is to provide insight into why we think the method works so well in some cases. Finally, we will demonstrate the application of the technology to everyday field situations useful to mainstream exploitation or reservoir engineers, as opposed to specialized or research applications. The Streamline Simulation Method For a more detailed mathematical description of the streamline method, please refer to the Appendix and subsequent references. In brief, the streamline simulation method solves a 3D problem by decoupling it into a series of 1D problems, each one solved along a streamline. Unlike FD simulation, streamline simulation relies on transporting fluids along a dynamically changing streamline- based flow grid, as opposed to the underlying Cartesian grid. The result is that large timestep sizes can be taken without numerical instabilities, giving the streamline method a near-linear scaling in terms of CPU efficiency vs. model size.6 For very large models, streamline-based simulators can be one to two orders of magnitude faster than FD methods. The timestep size in streamline methods is not limited by a classic grid throughput (CFL) condition but by how far fluids can be transported along the current streamline grid before the streamlines need to be updated. Factors that influence this limit include nonlinear effects like mobility, gravity, and well rate changes.5 In real field displacements, historical well effects have a far greater impact on streamline-pattern changes than do mobility and gravity. Thus, the key is determining how much historical data can be upscaled without significantly impacting simulation results. For all cases considered here, 1-year timestep sizes were more than adequate to capture changes in historical data, gravity, and mobility effects. It is worth noting that upscaling historical data also would benefit run times for FD simulations. Where possible, both SL and FD methods would then require similar simulation times. However, only for very coarse grids and specific problems is it possible to take 1-year timestep sizes with FD methods. As the grid becomes finer, CFL limitations begin to dictate the timestep size, which is much smaller than is necessary to honor nonlinearities. This is why streamline methods exhibit larger speed-up factors over FD methods as the number of grid cells increases.


Methodology ◽  
2017 ◽  
Vol 13 (1) ◽  
pp. 9-22 ◽  
Author(s):  
Pablo Livacic-Rojas ◽  
Guillermo Vallejo ◽  
Paula Fernández ◽  
Ellián Tuero-Herrero

Abstract. Low precision of the inferences of data analyzed with univariate or multivariate models of the Analysis of Variance (ANOVA) in repeated-measures design is associated to the absence of normality distribution of data, nonspherical covariance structures and free variation of the variance and covariance, the lack of knowledge of the error structure underlying the data, and the wrong choice of covariance structure from different selectors. In this study, levels of statistical power presented the Modified Brown Forsythe (MBF) and two procedures with the Mixed-Model Approaches (the Akaike’s Criterion, the Correctly Identified Model [CIM]) are compared. The data were analyzed using Monte Carlo simulation method with the statistical package SAS 9.2, a split-plot design, and considering six manipulated variables. The results show that the procedures exhibit high statistical power levels for within and interactional effects, and moderate and low levels for the between-groups effects under the different conditions analyzed. For the latter, only the Modified Brown Forsythe shows high level of power mainly for groups with 30 cases and Unstructured (UN) and Autoregressive Heterogeneity (ARH) matrices. For this reason, we recommend using this procedure since it exhibits higher levels of power for all effects and does not require a matrix type that underlies the structure of the data. Future research needs to be done in order to compare the power with corrected selectors using single-level and multilevel designs for fixed and random effects.


2001 ◽  
Author(s):  
Denis Morichon ◽  
Barbara Boczar-Karakiewicz ◽  
Edward B. Thornton
Keyword(s):  

Liquidity ◽  
2017 ◽  
Vol 6 (2) ◽  
pp. 103-109
Author(s):  
Yuri Nanda Larasati ◽  
Jafril Khalil

Regulation of the financial services authority (OJK) No. 31/POJK.05/2016 on Venture had arranged that the financial services agency on the basis of the law of pledge is in coaching and supervision OJK. Yet the existence of laws – invitation to Governing Enterprise pawn shops causing business activities conducted by the above parties are not yet regulated. The condition is feared could cause harm to the consumer society. The purpose of this research is to know the procedures, mechanisms, protection of goods and guarantee the consumer on an informal pledge financing, methods of determination of the cost of maintenance of the goods and the goods of the execution mechanism of the pledge as well as protection for the collateral items are viewed from the side of the consumer by looking at laws-invitations and Sharia. To find out whether the pledge have gotten permission from OJK. This research uses qualitative research methods with the study of library research, field data and simulations. The approach used in this study is the empirical juridical approach. Elaboration upon the results is discussed further in this article.


2020 ◽  
Vol 650 ◽  
pp. 289-308 ◽  
Author(s):  
V Raya ◽  
J Salat ◽  
A Sabatés

This work develops a new method, the box-balance model (BBM), to assess the role of hydrodynamic structures in the survival of fish larvae. The BBM was applied in the northwest Mediterranean to field data, on 2 small pelagic fish species whose larvae coexist in summer: Engraulis encrasicolus, a dominant species, and Sardinella aurita, which is expanding northwards in relation to sea warming. The BBM allows one to quantify the contribution of circulation, with significant mesoscale activity, to the survival of fish larvae, clearly separating the effect of transport from biological factors. It is based on comparing the larval abundances at age found in local target areas, associated with the mesoscale structures (boxes), to those predicted by the overall mortality rate of the population in the region. The application of the BBM reveals that dispersion/retention by hydrodynamic structures favours the survival of E. encrasicolus larvae. In addition, since larval growth and mortality rates of the species are required parameters for application of the BBM, we present their estimates for S. aurita in the region for the first time. Although growth and mortality rates found for S. aurita are both higher than for E. encrasicolus, their combined effect confers a lower survival to S. aurita larvae. Thus, although the warming trend in the region would contribute to the expansion of the fast-growing species S. aurita, we can confirm that E. encrasicolus is well established, with a better adapted survival strategy.


Sign in / Sign up

Export Citation Format

Share Document