scholarly journals Effect of Oriented Nuclei on the Competing Modes of α and One-Proton Radioactivities in the Vicinity of Z = 82 Shell Closure

Author(s):  
Sarbjeet Kaur ◽  
BirBikram Singh ◽  
S. K. Patra

The purpose of the present work is to investigate the alpha (α) emission as competing mode of one proton emission using the preformed cluster decay model (PCM). PCM is based on the quantummechanical tunneling mechanism of penetration of the preformed fragments through a potential barrier, calculated within WKB approximation. To explore the competing aspects of α and one proton radioactivity, we have chosen emitters present immediately above and below the Z = 82 shell closure i.e. 177Tl and 185Bi by taking into account the effects of deformations (β2) and orientations of outgoing nuclei. The minimized values of fragmentation potential and maximized values of preformation probability (P0) for proton and alpha fragment demonstrated the crucial role played by even Z - even N daughter and shell closure effect of Z = 82 daughter, in 177Tl and 185Bi, respectively. The higher values of P0 of the one proton further reveal significance of nuclear structure in the proton radioactivity. From the comparison of proton and α decay, we see that the former is heavily dominating with larger values of P0 in comparison to the later. Theoretically calculated half-lives of one proton and α emission for spherical and deformed considerations have also been compared with available experimental data.

Open Physics ◽  
2011 ◽  
Vol 9 (6) ◽  
Author(s):  
Viktor Glagolev ◽  
Gabriela Martinská ◽  
Jan Mušinský ◽  
Jozef Urbán ◽  
Khosim Olimov ◽  
...  

AbstractCorrelations between two protons emitted in dp and 16Op collisions at momenta 3.3 GeV/c and 52.6 GeV/c, respectively, are presented. The experimental data have been obtained using the one metre hydrogen bubble chamber exposed to nuclear beams from the synchrophasotron, JINR, Dubna. Data show a clear interference effect as expected for identical fermions. A Gaussian parametrization is used to determine the size of the proton emission source. The root mean square radius of the proton source calculated from the correlation function has been found to be equal to (2.10−0.35+0.43) fm and (2.67−0.38+0.54) fm for d and 16O respectively. It agrees with the known radii of these nuclei.


2019 ◽  
Vol 28 (07) ◽  
pp. 1950048 ◽  
Author(s):  
Kanishka Sharma ◽  
Manoj K. Sharma

The possible decay modes of even [Formula: see text] [Formula: see text]Cm parents have been analyzed to explore the relative emergence of various ground state emission mechanisms using the collective clusterization approach. Based on the collective availability of [Formula: see text], cluster and spontaneous fission (SF) experimental half-life data, we limit our study to isotopes of Cm. In view of this, the most probable decaying fragments from [Formula: see text]Cm are identified in different mass regions and a comprehensive analysis of the shell closure effect of the decay fragments corresponding to different mass domains is carried out within the methodology of Preformed Cluster Model (PCM). The isotopic analysis of the mass distributions and the related barrier characteristic quantities are investigated in view of ground state decay of [Formula: see text]Cm isotopes. The PCM calculated [Formula: see text] and SF half-lives compare nicely with the experimental data and the predictions are made on cluster and heavy-cluster decay of Cm isotopes, where experimental data is not available. It will of further interest to validate these predictions by performing corresponding experiments.


Author(s):  
Dalip Singh Verma ◽  
Kushmakshi .

Mass and charge distribution of the cross-section for the fission fragments obtained in the decay of hot and rotating compound system formed in the reaction 48Ca + 162Dy → 210Rn* at an incident energy 139.6 MeV has been calculated using the dynamical cluster-decay model. Isotopic composition for each element belonging to the symmetric mass region has been obtained. The shell closure at N=50 for light and at Z=50 for heavy mass binary fragments gives a deep minima in the fragmentation potential at touching configuration and governs the fission partition of the compound system. The fission fragments of the symmetric mass region have their dominating presence along with strong odd-even staggering i.e., even-Z fission fragments are more probable than the odd ones, similar to the observed trends of the yield.


2011 ◽  
Vol 286 (41) ◽  
pp. 35699-35707 ◽  
Author(s):  
Attila Iliás ◽  
Károly Liliom ◽  
Brigitte Greiderer-Kleinlercher ◽  
Stephan Reitinger ◽  
Günter Lepperdinger

Hyaluronan (HA), a polymeric glycosaminoglycan ubiquitously present in higher animals, is hydrolyzed by hyaluronidases (HAases). Here, we used bee HAase as a model enzyme to study the HA-HAase interaction. Located in close proximity to the active center, a bulky surface loop, which appears to obstruct one end of the substrate binding groove, was found to be functionally involved in HA turnover. To better understand kinetic changes in substrate interaction, binding of high molecular weight HA to catalytically inactive HAase was monitored by means of quartz crystal microbalance technology. Replacement of the delimiting loop by a tetrapeptide interconnection increased the affinity for HA up to 100-fold, with a KD below 1 nm being the highest affinity among HA-binding proteins surveyed so far. The experimental data of HA-HAase interaction were further validated showing best fit to the theoretically proposed sequential two-site model. Besides the one, which had been shown previously in course of x-ray structure determination, a previously unrecognized binding site works in conjunction with an unbinding loop that facilitates liberation of hydrolyzed HA.


2013 ◽  
Vol 22 (11) ◽  
pp. 1350081 ◽  
Author(s):  
K. P. SANTHOSH ◽  
B. PRIYANKA

The alpha-decay half-lives of the 24 isotopes of Eu (Z = 63) nuclei in the region 130≤A≤153, have been studied systematically within the Coulomb and proximity potential model (CPPM). We have modified the assault frequency and re-determined the half-lives and they show a better agreement with the experimental value. We have also done calculations on the half-lives within the recently proposed Coulomb and proximity potential model for deformed nuclei (CPPMDN). The computed half-lives are compared with the experimental data and they are in good agreement. Using our model, we could also demonstrate the influence of the neutron shell closure at N = 82, in both parent and daughter nuclei, on the alpha-decay half-lives.


2008 ◽  
Vol 36 (1) ◽  
pp. 015110 ◽  
Author(s):  
Sushil Kumar ◽  
Ramna Rani ◽  
Rajesh Kumar

Author(s):  
J. Shipinski ◽  
P. S. Myers ◽  
O. A. Uyehara

A spray-burning model (based on single-droplet theory) for heat release in a diesel engine is presented. Comparison of computations using this model and experimental data from an operating diesel engine indicate that heat release rates are not adequately represented by single-droplet burning rates. A new concept is proposed, i.e. a burning coefficient for a fuel spray. Comparisons between computations and experimental data indicate that the numerical value of this coefficient is nearly independent of engine speed and combustion-chamber pressure. However, the instantaneous value of the spray burning coefficient is approximately proportional to the instantaneous mass-averaged cylinder gas temperature to the one-third power.


2012 ◽  
Vol 16 (12) ◽  
pp. 1346-1352 ◽  
Author(s):  
Renata C. dos Reis ◽  
Ivano A. Devilla ◽  
Diego P. R. Ascheri ◽  
Ana C. O. Servulo ◽  
Athina B. M. Souza

The objective of this paper was to model the drying curves of the leaves of basil (Ocimum basilicum L.) in the infrared at temperatures of 50, 60, 70 and 80 ºC and to evaluate the influence of drying temperature on the color of dried leaves. Drying was conducted in infrared dryer with temperature and greenhouse air circulation. Experimental data were fitted to eight mathematical models. The magnitude of the coefficient of determination (R²), the mean relative error (P), the estimated mean error (SE) and chisquare test (χ2) were used to verify the degree of fitness of the models. From the study it was concluded that: a) the behavior of the drying curves of basil leaves was similar to most agricultural products, the drying times in the infrared were less than the drying times in an oven with air circulation, b) the mathematical drying model proposed by Midilli et al. (2002) was the one which best adjusted to the experimental data, c) the diffusion coefficient ranged from 9.10 x 10-12 to 2.92 x 10-11 m² s-1 and d) the color of the samples was highly influenced by drying, becoming darker due to loss of chlorophyll with increasing temperature.


Author(s):  
Deoras Prabhudharwadkar ◽  
Chris Bailey ◽  
Martin Lopez de Bertodano ◽  
John R. Buchanan

This paper describes in detail the assessment of the CFD code CFX to predict adiabatic liquid-gas two-phase bubbly flow. This study has been divided into two parts. In the first exercise, the effect of Lift Force, Wall Force and the Turbulent Diffusion Force have been assessed using experimental data from the literature for air-water upward bubbly flows through a pipe. The data used here had a characteristic near wall void peaking which was largely influenced by the joint action of the three forces mentioned above. The simulations were performed with constant bubble diameter assuming no bubble interactions. This exercise resulted in selection of the most appropriate closure form and closure coefficients for the above mentioned forces for the range of flow conditions chosen. In the second exercise, the One-Group Interfacial Area Transport equation was introduced in the two-fluid model of CFX. The interfacial area density plays important role in the correct prediction of interfacial mass, momentum and energy transfer and is affected by bubble breakup and coalescence processes in adiabatic flows. The One-Group Interfacial Area Transport Equation (IATE) has been developed and implemented for one-dimensional models and validated using cross-sectional area averaged experimental data over the last decade by various researchers. The original one-dimensional model has been extended to multidimensional flow predictions in this study and the results are presented in this paper. The paper also discusses constraints posed by the commercial CFD code CFX and the solutions worked out to obtain the most accurate implementation of the model.


2018 ◽  
Vol 141 (5) ◽  
Author(s):  
Yeshaswini Emmi ◽  
Andreas Fiolitakis ◽  
Manfred Aigner ◽  
Franklin Genin ◽  
Khawar Syed

A new model approach is presented in this work for including convective wall heat losses in the direct quadrature method of moments (DQMoM) approach, which is used here to solve the transport equation of the one-point, one-time joint thermochemical probability density function (PDF). This is of particular interest in the context of designing industrial combustors, where wall heat losses play a crucial role. In the present work, the novel method is derived for the first time and validated against experimental data for the thermal entrance region of a pipe. The impact of varying model-specific boundary conditions is analyzed. It is then used to simulate the turbulent reacting flow of a confined methane jet flame. The simulations are carried out using the DLR in-house computational fluid dynamics code THETA. It is found that the DQMoM approach presented here agrees well with the experimental data and ratifies the use of the new convective wall heat losses model.


Sign in / Sign up

Export Citation Format

Share Document