CONGENITAL DYSERYTHROPOIETIC ANEMIA, TYPE II: REPORT OF TWO CASES AND A REVIEW OF THE LITERATURE

PEDIATRICS ◽  
1972 ◽  
Vol 50 (6) ◽  
pp. 858-866
Author(s):  
Sharon Murphy ◽  
Frank Oski

Two children with congenital dyserythropoietic anemia type II, are described and contrasted. This recently recognized disorder of unknown pathogenesis is characterized by variable degrees of anemia, splenomegaly, and jaundice. Diagnosis was established by the demonstration of erythroid hyperplasia and erythroblastic multinuclearity in the bone marrow, and a positive acidified serum test. Erythrokinetic studies revealed a significant degree of ineffective erythropoiesis. One of the patients demonstrated Gaucher cells in the marrow as a presumed consequence of the increased rate of red blood cell destruction. Means of distinguishing this autosomal recessive disorder from other refractory anemias is discussed.

2020 ◽  
Vol 13 (8) ◽  
pp. 195
Author(s):  
Akiyoshi Takami ◽  
Yasuaki Tatsumi ◽  
Katsuhisa Sakai ◽  
Yasumichi Toki ◽  
Katsuya Ikuta ◽  
...  

Juvenile hemochromatosis (JH), type 2A hemochromatosis, is a rare autosomal recessive disorder of systemic iron overload due to homozygous mutations of HJV (HFE2), which encodes hemojuvelin, an essential regulator of the hepcidin expression, causing liver fibrosis, diabetes, and heart failure before 30 years of age, often with fatal outcomes. We report two Japanese sisters of 37 and 52 years of age, with JH, who showed the same homozygous HJV I281T mutation and hepcidin deficiency and who both responded well to phlebotomy on an outpatient basis. When all reported cases of JH with homozygous HJV mutations in the relevant literature were reviewed, we found—for the first time—that JH developed in females and males at a ratio of 3:2, with no age difference in the two groups. Furthermore, we found that the age of onset of JH may depend on the types of HJV mutations. In comparison to patients with the most common G320V/G320V mutation, JH developed earlier in patients with L101P/L101P or R385X/R385X mutations and later in patients with I281T/I281T mutations.


Blood ◽  
1972 ◽  
Vol 39 (1) ◽  
pp. 23-30 ◽  
Author(s):  
Kwan Yuen Wong ◽  
George Hug ◽  
Beatrice C. Lampkin

Abstract A 12-yr-old white girl with congenital dyserythropoietic anemia (CDA) type II was studied. Excessive cytoplasmic membranes (appearing like "double membranes") were found in the majority of the normoblasts. There was marked decrease in the uptake of tritiated thymidine in the binucleated normoblasts as demonstrated by radioautography. The results suggest that the cells with more severe structural cytoplasmic abnormalities and/or decreased DNA synthesis are destroyed within the bone marrow, and the circulating red cells are derived from a less abnormal population of precursors.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 3796-3796 ◽  
Author(s):  
Rajasekhar NVS Suragani ◽  
Robert Li ◽  
Dianne Sako ◽  
Asya Grinberg ◽  
R. Scott Pearsall ◽  
...  

Abstract Abstract 3796 Myelodysplastic syndromes (MDS) are a group of hematopoietic stem cell disorders characterized by peripheral blood cytopenias such as anemia, neutropenia or thrombocytopenia. Ineffective erythropoiesis due to increased proliferation and abortive maturation of precursors leads to severe anemia, the most common cytopenia observed in MDS syndromes. Despite elevated erythropoietin (EPO) and erythroid hyperplasia, MDS patients are often given recombinant EPO therapy to stimulate erythropoiesis. However, only a small proportion of patients respond to EPO therapy. Frequent blood transfusions as supportive care result in iron overloading and recently iron overloading is also linked to enhanced progression to AML. Therefore, alternative therapies are necessary to treat anemia in MDS patients. Signaling by members of the TGFβ superfamily are known regulators of erythropoiesis. We developed ACE-536, a ligand trap consisting of a modified activin receptor Type IIB extracellular domain linked to a human Fc domain. In vitro assays revealed that ACE-536 inhibits smad 2/3 ligands of the signaling pathway but not smad 1/5/8 ligands. Dose dependent studies using ACE-536 in mice, rats and monkeys revealed that ACE-536 treatment resulted in increased red blood parameters but did not affect other cell types. These data suggests that ACE-536 inhibits smad 2/3 phosphorylation modulating the expression of downstream genes involved in erythroid development pathway. BFU-E and CFU-E colony formation assays from bone marrow and spleen in mice following ACE-536 treatment revealed that ACE-536 did not affect the proliferation stages of erythropoiesis. In mice, terminal erythroid differentiation analysis by flow cytometry at 72hrs following RAP-536 (10mg/kg) treatment demonstrated decreased basophilic and increased ortho- and poly-chromatophilic erythroblasts and reticulocytes compared to VEH treatment. Cell cycle analysis of bone marrow and splenic erythroblasts counterstained with BrdU and 7-AAD after RAP-536 (10mg/kg, for 24 hours) or VEH treatment to EPO pre-treated (1500 units/kg, for 40 hours) mice (N=5/group) revealed that EPO+RAP-536 treatment resulted in significant decrease in S-phase and increase in G1/G2-phases of cell cycle compared to EPO+VEH treatment. In addition, EPO+RAP-536 treatment resulted in a greater increase in RBC parameters than either of the treatments alone. Together, these results demonstrate that ACE-536 increases red blood cell formation by promoting maturation of late stage erythroblasts. We then investigated the effect of ACE-536 on anemia in NUP98-HOXD13 (NHD13) transgenic murine model of MDS. NHD13 mice develop anemia, neutropenia and lymphopenia, with normal or hyper cellular bone marrow. A Majority of the mice die by 14 months due to severe pancytopenia or progression to acute myeloid leukemia. In this study, mice were divided into three groups based on age. Early (∼4 months old), mid (∼8 months old) and late stage (∼10 months) groups were randomized and dosed with either RAP-536 at 10 mg/kg or VEH twice per week for 6–8 weeks. NHD13 mice in each group had severe anemia characterized by reduced RBC, Hemoglobin and HCT and compared to wild-type littermates prior to treatment. Treatment of RAP-536 for 6–8 weeks significantly increased RBC parameters and reversed anemia at all stages. Peripheral blood smear analysis revealed no indication of increased leukemic progression due to RAP-536 treatment. Cell differential and flow cytometric evaluation of erythroid precursors from bone marrow demonstrated decreased erythroid precursors and hyperplasia after RAP-536 treatment compared to vehicle treated control. Our data demonstrate that RAP-536 can increase hematology parameters by enhancing maturation of terminally differentiated red blood cells. We have shown RAP-536 corrects ineffective erythropoiesis, decreases erythroid hyperplasia and normalizes myeloid: erythroid ratios without enhanced progression to AML in a murine MDS model. Therefore ACE-536 may represent a novel treatment for anemia associated with MDS, particularly in patients that are refractory to EPO therapy. ACE-536 has completed Phase I clinical trials in healthy human volunteers and Phase II study in MDS patients is planned. Disclosures: Suragani: Acceleron Pharma Inc: Employment, Equity Ownership. Li:Acceleron Pharma Inc: Employment, Equity Ownership. Sako:Acceleron Pharma Inc: Employment, Equity Ownership. Grinberg:Acceleron Pharma Inc: Employment, Equity Ownership. Pearsall:Acceleron Pharma Inc: Employment, Equity Ownership. Kumar:Acceleron Pharma Inc: Employment, Equity Ownership.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 535-535
Author(s):  
Roberta Russo ◽  
Immacolata Andolfo ◽  
Luigia De Falco ◽  
Francesco Manna ◽  
Antonella Gambale ◽  
...  

Abstract Recessive mutations in SEC23B gene cause congenital dyserythropoietic anemia type II (CDAII), a rare hereditary disorder hallmarked by ineffective erythropoiesis, iron overload, and reduced expression of hepatic hormone hepcidin (Iolascon, 2013). The most recently described hepcidin regulator is the erythroblast-derived hormone erythroferrone (ERFE), a member of TNF-α superfamily that specifically inhibits hepcidin production in experimental models (Kautz, 2014). However, the function of ERFE in humans remains to be investigated. To determine whether dysregulation of ERFE expression is associated with ineffective erythropoiesis and iron-loading in CDAII, we studied the ERFE-encoding FAM132B gene expression in 48 SEC23B-related CDAII patients and 29 age and gender matched healthy controls (HCs). Twelve new cases and four novel SEC23B mutations were described. Samples were obtained after informed consent, according to the Declaration of Helsinki. Genomic DNA, mutational screening, RNA isolation, cDNA preparation, and qRT-PCR were performed as previously described (Russo, 2013). All patients were young adults (17.0±2.5 years at diagnosis), with increased serum ferritin (395.4±67.6 ng/mL) and transferrin saturation (71.9±5.4 %). We observed a statistically significant overexpression of FAM132B gene in peripheral blood mononuclear cells from CDAII patients (9.09±0.08) compared to HCs (8.32±0.12, p<0.0001). A similar trend was obtained when evaluating FAM132B expression in reticulocytes from a subset of patients and HCs. Of note, a statistically significant correlation between peripheral blood and reticulocyte FAM132B expression from the same patients was observed (Spearman ρ= 0.78, p=0.02). Although the role of ERFE in peripheral blood is still unknown, our observations suggested that the evaluation of FAM132B mRNA in peripheral blood is a reliable and easy-to-measure marker of ERFE levels. When we divided CDAII patients into two sub-groups accordingly to FAM132B gene expression, we observed a statistically significant reduction in hemoglobin (Hb) level in the high-FAM132B subset (8.6±0.4 g/dL) respect to low-FAM132B one (10.1±0.5 g/dL, p=0.02). Of note, the expression level of FAM132B did not correlate with the transfusion regimen. The higher amount of ERFE reflects the increased iron demand for Hb production as well as the expanding abnormal erythropoiesis, as attested by the increased RDW and sTfR (although not significant) in high-FAM132B patients. This in turn leads to reduced hepcidin in high-FAM132B group (4.2±1.8 nM) compared to low-FAM132B one (5.9±1.8 nM, p=0.05), resulting in augmented iron delivery to the erythron. Although the iron balance data do not differ significantly between the two groups, a tendency to decreased hepcidin/ferritin ratio and increased transferrin saturation was observed in high-FAM132B patients. Thus, FAM132B overexpression seems to contribute to the inappropriate suppression of hepcidin with subsequent hemosiderosis observed in CDAII. Consistent with our previous studies, we observed a reduced SEC23B expression in our patients compared to HC. Indeed, FAM132B and SEC23B gene expression exhibited an inverse correlation (Spearman ρ=-0.36, p=0.01). We confirmed the ex vivo data about inverse correlation between FAM132B and SEC23B expression observed in our patients by establishing K562 SEC23B-silenced cells. To knockdown SEC23B gene expression in K562 cells two different pGIPZ Lentiviral shRNAmir for SEC23B (shSEC23B-70/-74) were used. We observed a higher expression of FAM132B at 5 days of erythroid differentiation in K562 SEC23B-silenced cell compared to not-silenced ones. Conversely, SEC23B expression was lower in both shSEC23B compared to sh-CTR at 2 and 5 days of differentiation. Although the mechanisms of hemin-induced differentiation are quite different from EPO-induced ones, we can hypothesize that FAM132B over-expression is related to the maturative arrest and the subsequent increased number of erythroid precursors. This study provides the first analysis on ERFE regulation in humans. Our data suggest that ERFE over-expression in CDAII patients is the result of both physiological and pathological mechanisms leading to hepcidin suppression in condition of dyserythropoiesis. Nevertheless, it seems that ERFE cannot be the main erythroid regulator of hepcidin suppression, at least in CDAII patients. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 847-847
Author(s):  
Lídia Romero-Cortadellas ◽  
Gonzalo Hernández ◽  
Xènia Ferrer-Cortès ◽  
Veronica Venturi ◽  
Mireia Olivella ◽  
...  

Abstract An autosomal dominant form of congenital dyserythropoietic anemia type III (CDA III) is caused by a missense mutation in the KIF23 gene whose protein product, mitotic kinesin-like protein (MKLP1), is part of the centralspindlin complex involved in cytokinesis. Several case reports suggested the existence of an autosomal recessive inheritance form of CDA III so far not genetically characterized. By means of whole exome sequencing in a Spanish CDA III family with healthy parents, we identified in the male proband a novel homozygous missense mutation p.Pro432Ser in the RACGAP1 gene, which encodes for the RACGAP1 protein (Rac GTPase-activating protein 1, also known as MgcRacGAP or CYK-4), the partner of MKLP1 in the centralspindlin complex. A second CDA III Spanish patient has a different rare and novel homozygous missense mutation, p.Thr220Ala, in the RACGAP1 gene. Both patients presented with macrocytic anemia, aberrant multinucleated erythroblasts in the bone marrow typically seen in CDA III cases, no iron overload and skull defects secondary to severe anemia. Silencing of RACGAP1 using siRNA in HeLa cells mimics the cytokinesis defect observed in the bone marrow of our patients. Both mutations disrupt normal cytokinesis and alter the GTPase balance in patients' cells. We conclude that the autosomal recessive form of CDA type III is caused by mutations in the RACGAP1 gene, encoding for RACGAP1 protein, which is the partner of MKLP1 in the centralspindlin complex critical for cytokinesis and now both proteins are associated with CDA type III. Figure 1 Figure 1. Disclosures No relevant conflicts of interest to declare.


2020 ◽  
Vol 21 (15) ◽  
pp. 5577
Author(s):  
Gianluca De Rosa ◽  
Immacolata Andolfo ◽  
Roberta Marra ◽  
Francesco Manna ◽  
Barbara Eleni Rosato ◽  
...  

Congenital dyserythropoietic anemia type II (CDA II) is a hypo-productive anemia defined by ineffective erythropoiesis through maturation arrest of erythroid precursors. CDA II is an autosomal recessive disorder due to loss-of-function mutations in SEC23B. Currently, management of patients with CDA II is based on transfusions, splenectomy, or hematopoietic stem-cell transplantation. Several studies have highlighted benefits of ACE-011 (sotatercept) treatment of ineffective erythropoiesis, which acts as a ligand trap against growth differentiation factor (GDF)11. Herein, we show that GDF11 levels are increased in CDA II, which suggests sotatercept as a targeted therapy for treatment of these patients. Treatment of stable clones of SEC23B-silenced erythroleukemia K562 cells with the iron-containing porphyrin hemin plus GDF11 increased expression of pSMAD2 and reduced nuclear localization of the transcription factor GATA1, with subsequent reduced gene expression of erythroid differentiation markers. We demonstrate that treatment of these SEC23B-silenced K562 cells with RAP-011, a “murinized” ortholog of sotatercept, rescues the disease phenotype by restoring gene expression of erythroid markers through inhibition of the phosphorylated SMAD2 pathway. Our data also demonstrate the effect of RAP-011 treatment in reducing the expression of erythroferrone in vitro, thus suggesting a possible beneficial role of the use of sotatercept in the management of iron overload in patients with CDA II.


Author(s):  
George Hug ◽  
K. Y. Wong ◽  
Beatrice Lampkin

Congenital dyserythropoietic anemia (CDA) as described in 1966 was characterized by (i) erythroblastic multinuclearity and (ii) lysis of the patient's red cells in acidified compatible normal human serum. This condition has since been labeled CDA Type II to distinguish it from a similar entity, CDA Type I, with erythroblastic multinuclearity but without red cell lysis in acidified human serum. According to this classification, our initial study of bone marrow ultrastructure in CDA concerned a girl with Type II. Her bone marrow contained erythroid cells with excessive cytoplasmic membranes and multiple nuclei. The present report illustrates this observation. The patient was a 12 year old white girl with congenital anemia and benign recurrent jaundice. Hemolysis was not present since Cr51 red cell survival time was normal. Bone marrow aspirates (Figure 1, 2 and 4) circulating red cells (Figure 3) and hepatic biopsy specimens were examined. The markers indicate 0.5 microns and N designates nucleus. The myeloid series was normal. Figure 1 shows a representative polychromatophilic normoblast.


2004 ◽  
Vol 46 (3) ◽  
pp. 274-279
Author(s):  
Stavroula Kostaridou ◽  
Sophia Polychronopoulou ◽  
Evangelos Premetis ◽  
Ioannis Papassotiriou ◽  
Alexandra Stamoulakatou ◽  
...  

Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 247-247 ◽  
Author(s):  
Michael Dussiot ◽  
Thiago Maciel ◽  
Aurelie Fricot ◽  
Joel Veiga ◽  
Etienne Paubelle ◽  
...  

Abstract Abstract 247 Background: β-thalassemia is associated with ineffective erythropoiesis, accelerated erythroid differentiation and apoptosis resulting in anemia and iron overload. The molecular mechanism involved is still incompletely understood. Members of the TGF-β superfamily participate in both proliferation and differentiation of erythroid progenitors. However, the role of these molecules in models of ineffective erythropoiesis has not been addressed so far. RAP-011 is a ligand trap consisting of the extracellular domain of ActRIIA linked to mouse IgG1 Fc domain. We aimed to study the role of ActRIIA signaling in the ineffective erythropoiesis of β-thalassemia and to evaluate the therapeutic impact of RAP-011. Methods: Hbbth1/th1 mice (a model of β-thalassemia intermedia) were subcutaneously treated with RAP-011 (10mg/kg body weight) twice a week for 30–60 days and biological and biochemical parameters were followed. Results: RAP-011 treatment significantly increased hemoglobin levels, red blood cell counts, MCV, MCH and hematocrit with a concomitant decrease in bilirubin levels and reticulocyte counts (since 10 days of treatment and sustained until day 60 of follow up). Flow cytometry analysis showed that RAP-011 significantly decreased late basophilic and polychromatic erythroblast cell numbers in both bone marrow and spleen indicating that RAP-011 corrects ineffective erythropoiesis. We next evaluated the expression of putative ActRIIA ligand(s) in β-thalassemia. Increased expression of Growth Differentiation Factor 11 (GDF11) was observed in cultured erythroblasts and in spleen sections of thalassemic mice. RAP-011 treatment decreased these elevated GDF11 levels in both bone marrow and spleen. We further investigated how BMP/Activin signaling was involved in ineffective erythropoiesis. Anti-GDF11 antibodies, follistatin (activin and GDF11 antagonist) and dorsomorphin (a small molecule inhibitor of SMAD1/5/8 phosphorylation) reduced differentiation, induced FAS-L expression and apoptosis in erythroblasts both in vivo and in vitro whereas noggin (a BMP-2/4 antagonist) had no effect on erythroblast differentiation. Altogether, these data suggest that Activin/BMP signaling controls erythroblast differentiation and targeting BMP type II /activin type II receptors can decrease ineffective erythropoiesis of β-thalassemia. Summary: Sotatercept (a humanized version of RAP-011) is currently in phase II clinical trials for treatment of anemia in patients with Myeloma Bone Disease and End Stage Renal Disease and data from our non-clinical findings support a newly initiated β-thalassemia clinical trial. Our results suggest that sotatercept would be a potential therapeutic tool to improve anemia, increase hemoglobin levels and correct ineffective erythropoiesis and its side effects in β-thalassemic patients. Disclosures: Daniel: Celgene Corporation: Employment. Chopra:Celgene Corp: Employment, Equity Ownership. Sung:Celgene: Employment.


Sign in / Sign up

Export Citation Format

Share Document