ERRATA

PEDIATRICS ◽  
1980 ◽  
Vol 65 (5) ◽  
pp. 1006-1006

In the article "A Diagnostic Approach to Metabolic Acidosis in Children" by Kappy and Morrow (Pediatrics 65:351-356, 1980) on p 351 under "Normal Acid-Base Physiology" the normal arterial blood pH is maintained at 7.40 (H+ = 39.8 nEq/liter not mEq/liter.

2018 ◽  
Vol 2018 ◽  
pp. 1-5 ◽  
Author(s):  
Javier Enrique Cely ◽  
Oscar G. Rocha ◽  
María J. Vargas ◽  
Rafael M. Sanabria ◽  
Leyder Corzo ◽  
...  

Background. Acid-base disorders have been previously described in patients with chronic hemodialysis, with metabolic acidosis being the most important of them; however, little is known about the potential changes in acid-base status of patients on dialysis living at high altitudes. Methods. Cross-sectional study including 93 patients receiving chronic hemodialysis on alternate days and living in Bogotá, Colombia, at an elevation of 2,640 meters (8,661 feet) over sea level (m.o.s.l.). Measurements of pH, PaCO2, HCO3, PO2, and base excess were made on blood samples taken from the arteriovenous fistula (AVF) during the pre- and postdialysis periods in the midweek hemodialysis session. Normal values for the altitude of Bogotá were taken into consideration for the interpretation of the arterial blood gases. Results. 43% (n= 40) of patients showed predialysis normal acid-base status. The most common acid-base disorder in predialysis period was metabolic alkalosis with chronic hydrogen ion deficiency in 19,3% (n=18). Only 9,7% (n=9) had predialysis metabolic acidosis. When comparing pre- and postdialysis blood gas analysis, higher postdialysis levels of pH (7,41 versus 7,50, p<0,01), bicarbonate (21,7mmol/L versus 25,4mmol/L, p<0,01), and base excess (-2,8 versus 2,4, p<0,01) were reported, with lower levels of partial pressure of carbon dioxide (34,9 mmHg versus 32,5 mmHg, p<0,01). Conclusion. At an elevation of 2,640 m.o.s.l., a large percentage of patients are in normal acid-base status prior to the dialysis session (“predialysis period”). Metabolic alkalosis is more common than metabolic acidosis in the predialysis period when compared to previous studies. Paradoxically, despite postdialysis metabolic alkalosis, PaCO2 levels are lower than those found in the predialysis period.


2021 ◽  
pp. ASN.2019060613
Author(s):  
Jeppe S. M. Olsen ◽  
Samuel Svendsen ◽  
Peder Berg ◽  
Vibeke S. Dam ◽  
Mads V. Sorensen ◽  
...  

BackgroundThe electroneutral Na+/HCO3− cotransporter NBCn1 (Slc4a7) is expressed in basolateral membranes of renal medullary thick ascending limbs (mTALs). However, direct evidence that NBCn1 contributes to acid-base handling in mTALs, urinary net acid excretion, and systemic acid-base homeostasis has been lacking.MethodsMetabolic acidosis was induced in wild-type and NBCn1 knockout mice. Fluorescence-based intracellular pH recordings were performed and NH4+ transport measured in isolated perfused mTALs. Quantitative RT-PCR and immunoblotting were used to evaluate NBCn1 expression. Tissue [NH4+] was measured in renal biopsies, NH4+ excretion and titratable acid quantified in spot urine, and arterial blood gasses evaluated in normoventilated mice.ResultsBasolateral Na+/HCO3− cotransport activity was similar in isolated perfused mTALs from wild-type and NBCn1 knockout mice under control conditions. During metabolic acidosis, basolateral Na+/HCO3− cotransport activity increased four-fold in mTALs from wild-type mice, but remained unchanged in mTALs from NBCn1 knockout mice. Correspondingly, NBCn1 protein expression in wild-type mice increased ten-fold in the inner stripe of renal outer medulla during metabolic acidosis. During systemic acid loading, knockout of NBCn1 inhibited the net NH4+ reabsorption across mTALs by approximately 60%, abolished the renal corticomedullary NH4+ gradient, reduced the capacity for urinary NH4+ excretion by approximately 50%, and delayed recovery of arterial blood pH and standard [HCO3−] from their initial decline.ConclusionsDuring metabolic acidosis, NBCn1 is required for the upregulated basolateral HCO3− uptake and transepithelial NH4+ reabsorption in mTALs, renal medullary NH4+ accumulation, urinary NH4+ excretion, and early recovery of arterial blood pH and standard [HCO3−]. These findings support that NBCn1 facilitates urinary net acid excretion by neutralizing intracellular H+ released during NH4+ reabsorption across mTALs.


1970 ◽  
Vol 33 (5) ◽  
pp. 498-505 ◽  
Author(s):  
R. Zupping

✓ Acid-base and gas parameters of CSF, jugular venous and arterial blood were measured in 45 patients with brain injury in the first 12 days after trauma or operation. CSF metabolic acidosis together with respiratory alkalosis and hypoxemia in the cerebral venous and arterial blood were the most characteristic findings. A close correlation between the severity of brain damage and the intensity of the CSF metabolic acidosis and arterial hypocapnia was revealed. It was concluded that brain hypoxia and acidosis play an important role in the development of cerebral edema and permanent brain damage.


PEDIATRICS ◽  
1975 ◽  
Vol 56 (6) ◽  
pp. 999-1004
Author(s):  
Daniel C. Shannon ◽  
Robert De Long ◽  
Barry Bercu ◽  
Thomas Glick ◽  
John T. Herrin ◽  
...  

The initial acid-base status of eight survivors of Reye's syndrome was characterized by acute respiratory alkalosis (Pco2=32 mm Hg; Hco3-= 22.0 mEq/liter) while that of eight children who died was associated with metabolic acidosis as well (HCO3-=10.0 mEq/liter). Arterialinternal jugular venous ammonia concentration differences on day 1 (299 mg/100 ml) and day 2 (90 mg/ 100 ml) reflected cerebral uptake of ammonia while those on days 3 and 4 (-43 and -55 mg/100 ml) demonstrated cerebral release. Arterial blood hyperammonemia can be detoxified safely in the brain as long as the levels do not exceed approximately 300µg/100 ml. Beyond that level lactic acidosis is observed, particularly in cerebral venous drainage. Arterial blood hyperammonemia was also related to the extent of alveolar hyperventilation. These findings are very similar to those seen in experimental hyperammonemia and support the concept that neurotoxicity in children with Reye's syndrome is at least partly due to impaired oxidative metabolism secondary to hyperammonemia.


1989 ◽  
Vol 141 (1) ◽  
pp. 407-418 ◽  
Author(s):  
Y. TANG ◽  
D. G. McDONALD ◽  
R. G. BOUTILIER

Blood acid-base regulation following exhaustive exercise was investigated in freshwater- (FW) and seawater- (SW) adapted rainbow trout (Salmo gairdneri) of the same genetic stock. Following exhaustive exercise at 10°C, both FW and SW trout displayed a mixed respiratory and metabolic blood acidosis. However, in FW trout the acidosis was about double that of SW trout and arterial blood pH took twice as long to correct. These SW/FW differences were related to the relative amounts of net H+ equivalent excretion to the environmental water, SW trout excreting five times as much as FW trout. The greater H+ equivalent excretion in SW trout may be secondary to changes in the gills that accompany the adaptation from FW to SW. It may also be related to the higher concentrations of HCO3− as well as other exchangeable counter-ions (Na+ and Cl−) in the external medium in SW compared to FW.


1981 ◽  
Vol 51 (2) ◽  
pp. 276-281 ◽  
Author(s):  
S. Javaheri ◽  
A. Clendening ◽  
N. Papadakis ◽  
J. S. Brody

It has been thought that the blood-brain barrier is relatively impermeable to changes in arterial blood H+ and OH- concentrations. We have measured the brain surface pH during 30 min of isocapnic metabolic acidosis or alkalosis induced by intravenous infusion of 0.2 N HCl or NaOH in anesthetized dogs. The mean brain surface pH fell significantly by 0.06 and rose by 0.04 pH units during HCl or NaOH infusion, respectively. Respective changes were also observed in the calculated cerebral interstitial fluid [HCO-3]. There were no significant changes in cisternal cerebrospinal fluid acid-base variables. It is concluded that changes in arterial blood H+ and OH- concentrations are reflected in brain surface pH relatively quickly. Such changes may contribute to acute respiratory adaptations in metabolic acidosis and alkalosis.


1964 ◽  
Vol 19 (2) ◽  
pp. 319-321 ◽  
Author(s):  
J. W. Severinghaus ◽  
A. Carceleń B.

CSF pH was shown in a prior report to remain essentially constant during 8 days of acclimatization to 3,800 m. In order to further evaluate the possible role of CSF acid-base equilibria in the regulation of respiration, 20 Peruvian Andean natives were studied at altitudes of 3,720–4,820 m. In ten subjects at 3,720 m, means were: CSF pH 7.327, Pco2 43, HCO3- 21.5, Na+ 136, K+ 2.6, Cl- 124, lactate 30 mg/100 ml. Arterial blood: pH 7.43, Pco2 32.5, HCO3- 21.3, Na+ 136, K+ 4.2, Cl- 107, hematocrit 49, SaOO2 89.6. In six subjects at 4,545 m and four at 4,820 m CSF values were not significantly different; mean arterial Pco2 was 32.6 and 32.3, respectively. The only significant variations with altitude were the expected lowering of PaOO2 to 47 and 43.5 mm Hg, and of SaOO2 to 84.2 and 80.7, and increase of hematocrit to 67% and 75%, respectively. The natives differed from recently acclimatized sea-level residents in showing less ventilation (higher Pco2) in response to the existing hypoxia, and less alkaline arterial blood. The difference appears to relate to peripheral chemoreceptor response to hypoxia rather than central medullary chemoreceptor. respiratory regulation at high altitude; chronic acclimatization to altitude; peripheral chemoreceptor response to hypoxia; CSF and medullary respiratory chemoreceptors Submitted on June 12, 1963


1994 ◽  
Vol 14 (1) ◽  
pp. 61-65 ◽  
Author(s):  
Jacques J. Sennesael ◽  
Godelieve C. De Smedt ◽  
Patricia Van der Niepen ◽  
Dierik L. Verbeelen

Objective To assess the possible effects of peritonitis on peritoneal and systemic acid-base status. Design pH, pCO2, lactate, and total leukocyte and differential count were simultaneously determined in the overnight dwell peritoneal dialysis effluent (PDE) and arterial blood in noninfected patients (controls) and on days 1, 3, and 5 from the onset of peritonitis. Setting University multidisciplinary dialysis program. Patients Prospective analysis of 63 peritonitis episodes occurring in 30 adult CAPD patients in a single center. Results In controls, mean (±SD) acid-base parameters were pH 7.41 ±0.05, pCO2 43.5±2.6 mm Hg, lactate 2.5±1.5 mmol/L in the PDE, and pH 7.43±0.04, PaCO2 36.8±3.8 mm Hg, lactate 1.4±0.7 mmol/L in the blood. In sterile (n=6), gram-positive (n=34), and Staphylococcus aureus (n=9) peritonitis PDE pH's on day 1 were, respectively, 7. 29±0.07, 7. 32±0.07, and 7.30±0.08 (p<0.05 vs control). In gram -negative peritonitis (n=14) PDE pH was 7.21 ±0.08 (p<0.05 vs all other groups). A two-to-threefold increase in PDE lactate was observed in all peritonitis groups, but a rise in pCO2 was only seen in gram -negative peritonitis. Acid-base profile of PDE had returned to control values by day 3 in sterile, gram -positive and Staphylococcus aureus peritonitis and by day 5 in gramnegative peritonitis. Despite a slight increase in plasma lactate on the first day of peritonitis, arterial blood pH was not affected by peritonitis. Conclusion PDE pH is decreased in continuous ambulatory peritoneal dialysis (CAPD) peritonitis, even in the absence of bacterial growth. In gram-negative peritonitis, PDE acidosis is more pronounced and prolonged, and pCO2 is markedly increased. Arterial blood pH is not affected by peritonitis.


2007 ◽  
Vol 292 (3) ◽  
pp. G899-G904 ◽  
Author(s):  
Markus Sjöblom ◽  
Olof Nylander

When running in vivo experiments, it is imperative to keep arterial blood pressure and acid-base parameters within the normal physiological range. The aim of this investigation was to explore the consequences of anesthesia-induced acidosis on basal and PGE2-stimulated duodenal bicarbonate secretion. Mice (strain C57bl/6J) were kept anesthetized by a spontaneous inhalation of isoflurane. Mean arterial blood pressure (MAP), arterial acid-base balance, and duodenal mucosal bicarbonate secretion (DMBS) were studied. Two intra-arterial fluid support strategies were used: a standard Ringer solution and an isotonic Na2CO3 solution. Duodenal single perfusion was used, and DMBS was assessed by back titration of the effluent. PGE2 was used to stimulate DMBS. In Ringer solution-infused mice, isoflurane-induced acidosis became worse with time. The blood pH was 7.15–7.21 and the base excess was about −8 mM at the end of experiments. The continuous infusion of Na2CO3 solution completely compensated for the acidosis. The blood pH was 7.36–7.37 and base excess was about 1 mM at the end of the experiment. Basal and PGE2-stimulated DMBS were markedly greater in animals treated with Na2CO3 solution than in those treated with Ringer solution. MAP was slightly higher after Na2CO3 solution infusion than after Ringer solution infusion. We concluded that isoflurane-induced acidosis markedly depresses basal and PGE2-stimulated DMBS as well as the responsiveness to PGE2, effects prevented by a continuous infusion of Na2CO3. When performing in vivo experiments in isoflurane-anesthetized mice, it is recommended to supplement with a Na2CO3 infusion to maintain a normal acid-base balance.


Sign in / Sign up

Export Citation Format

Share Document