Adverse Effects of Cancer Therapy in Children

1985 ◽  
Vol 6 (9) ◽  
pp. 259-268
Author(s):  
Arlynn F. Mulne ◽  
John C. Koepke

There are many opportunities for the primary care pediatrician to participate actively in the care of children with cancer. Adverse effects of therapy must be considered in the differential diagnosis of many problems encountered by these patients, and appropriate management instituted. Adverse effects may appear during therapy or may become apparent only many years later. Referral to a hematologist/oncologist should be considered when help is needed in the diagnosis and management of possible therapy-related problems.

2014 ◽  
Vol 100 (3) ◽  
pp. 301-307
Author(s):  
J Laird ◽  
MC Evershed

AbstractAs with the general population, headaches are commonly suffered by members of the United Kingdom Armed Forces. These are often managed by patients with over-the-counter medication without the involvement of healthcare professionals. Patients may present to medical teams when deployed because of limited access to over-the-counter medication or because of concerns about the cause of the headache. This article will examine the differential diagnosis and management of headaches in primary care as well as considering the occupational and operational aspects related to the Royal Navy (RN). The aim is to equip General Practitioners (GPs) and General Duties Medical Officers (GDMOs) with the clinical knowledge to diagnose various common forms of headaches and to detect the red flag symptoms that warrant further investigation. This article will also make specific reference to the service person and the impact of headaches on occupational functioning and operational capability.


2020 ◽  
Vol 20 (4) ◽  
pp. 271-287 ◽  
Author(s):  
Kuldeep Rajpoot

Though modern available cancer therapies are effective, they possess major adverse effects, causing non-compliance to patients. Furthermore, the majority of the polymeric-based medication platforms are certainly not universally acceptable, due to their several restrictions. With this juxtaposition, lipid-based medication delivery systems have appeared as promising drug nanocarriers to replace the majority of the polymer-based products because they are in a position to reverse polymer as well as, drug-associated restrictions. Furthermore, the amalgamation of the basic principle of nanotechnology in designing lipid nanocarriers, which are the latest form of lipid carriers, has tremendous chemotherapeutic possibilities as tumor-targeted drug-delivery pertaining to tumor therapy. Apart from this, it is reported that nearly 40% of the modern medication entities are lipophilic. Moreover, research continues to be efficient in attaining a significant understanding of the absorption and bioavailability of the developed lipids systems.


Diagnostics ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 838
Author(s):  
Katharina A. Sterenczak ◽  
Nadine Stache ◽  
Sebastian Bohn ◽  
Stephan Allgeier ◽  
Bernd Köhler ◽  
...  

During breast cancer therapy, paclitaxel and trastuzumab are both associated with adverse effects such as chemotherapy-induced peripheral neuropathy and other systemic side effects including ocular complications. Corneal nerves are considered part of the peripheral nervous system and can be imaged non-invasively by confocal laser scanning microscopy (CLSM) on the cellular level. Thus, in vivo CLSM imaging of structures of the corneal subbasal nerve plexus (SNP) such as sensory nerves or dendritic cells (DCs) can be a powerful tool for the assessment of corneal complications during cancer treatment. During the present study, the SNP of a breast cancer patient was analyzed over time by using large-scale in vivo CLSM in the course of paclitaxel and trastuzumab therapy. The same corneal regions could be re-identified over time. While the subbasal nerve morphology did not alter significantly, a change in dendritic cell density and an additional local burst within the first 11 weeks of therapy was detected, indicating treatment-mediated corneal inflammatory processes. Ocular structures such as nerves and dendritic cells could represent useful biomarkers for the assessment of ocular adverse effects during cancer therapy and their management, leading to a better visual prognosis.


2021 ◽  
Vol 22 (11) ◽  
pp. 5804
Author(s):  
Kamila Buzun ◽  
Agnieszka Gornowicz ◽  
Roman Lesyk ◽  
Krzysztof Bielawski ◽  
Anna Bielawska

Autophagy is a process of self-degradation that plays an important role in removing damaged proteins, organelles or cellular fragments from the cell. Under stressful conditions such as hypoxia, nutrient deficiency or chemotherapy, this process can also become the strategy for cell survival. Autophagy can be nonselective or selective in removing specific organelles, ribosomes, and protein aggregates, although the complete mechanisms that regulate aspects of selective autophagy are not fully understood. This review summarizes the most recent research into understanding the different types and mechanisms of autophagy. The relationship between apoptosis and autophagy on the level of molecular regulation of the expression of selected proteins such as p53, Bcl-2/Beclin 1, p62, Atg proteins, and caspases was discussed. Intensive studies have revealed a whole range of novel compounds with an anticancer activity that inhibit or activate regulatory pathways involved in autophagy. We focused on the presentation of compounds strongly affecting the autophagy process, with particular emphasis on those that are undergoing clinical and preclinical cancer research. Moreover, the target points, adverse effects and therapeutic schemes of autophagy inhibitors and activators are presented.


Cancers ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1201
Author(s):  
Garri Manasaryan ◽  
Dmitry Suplatov ◽  
Sergey Pushkarev ◽  
Viktor Drobot ◽  
Alexander Kuimov ◽  
...  

The PARP family consists of 17 members with diverse functions, including those related to cancer cells’ viability. Several PARP inhibitors are of great interest as innovative anticancer drugs, but they have low selectivity towards distinct PARP family members and exert serious adverse effects. We describe a family-wide study of the nicotinamide (NA) binding site, an important functional region in the PARP structure, using comparative bioinformatic analysis and molecular modeling. Mutations in the NA site and D-loop mobility around the NA site were identified as factors that can guide the design of selective PARP inhibitors. Our findings are of particular importance for the development of novel tankyrase (PARPs 5a and 5b) inhibitors for cancer therapy.


Sign in / Sign up

Export Citation Format

Share Document