scholarly journals Analysis of Energy Consumption during Plowing Using a Motor-Block with Moldboard Plow

2019 ◽  
Vol 29 (3) ◽  
pp. 414-427
Author(s):  
Vladimir F. Kupryashkin ◽  
Aleksandr S. Ulanov ◽  
Nikolay I. Naumkin ◽  
Anatoliy V. Bezrukov ◽  
Michail G. Shlyapnikov

Introduction. Plowing the soil is a major operation in the cultivation of crops. It is one of the most labor-intensive operations in crop production, accounting for about 40 % of all energy costs. Most of these costs fall on consumed power, ensuring the effective functioning of the motor-block unit with a moldboard plow. Therefore, estimation of power consumed by motor-blocks is the urgent task. Materials and Methods. To solve the problem of determining the energy characteristics of the motor-block unit during plowing, a theoretical analysis was carried out, including values of torque, traction force on running wheels, resistance during their rolling and resistance force at the jointers-depleted plow, with the account for the geometry of the plowing unit based on the motor-block. Dependences of power consumption and specific energy consumption were obtained using the method described below. Results.As a result of our analysis of the power balance, we obtained dependences to find power consumption, as well as the specific energy intensity of plowing the soil with a motor-moldboard plow, which allowed for energy assessment of the functioning of the agricultural unit. Discussion and Conclusion. On the basis of these dependences of the required power and specific energy consumption, taking into account experimental data on interaction of the plow with the soil, design parameters and technological modes of operation of the agricultural unit consisting of motor unit Neva MB-2S-7,5 Pro and plow P1-20/3, were obtained to facilitate the choice of optimal modes of their functioning.

Energies ◽  
2020 ◽  
Vol 13 (19) ◽  
pp. 5214 ◽  
Author(s):  
Witold Kawalec ◽  
Natalia Suchorab ◽  
Martyna Konieczna-Fuławka ◽  
Robert Król

Belt conveyor (BC) transportation systems are considered to be the most effective for handling large volumes of bulk material. With regards to the rules of sustainable development, the improvement of belt conveyor technology is, in many cases, focused on environmental issues, which include the idea of energy usage optimization. The key issue in an energy-efficient transportation system is reducing the value of specific energy consumption (SEC) by increasing conveyor capacity whilst decreasing belt conveyor motion resistance. The main idea of this paper is to conduct an analysis of the modernization of existing belt conveyor transportation systems operated in open-pit lignite mines, in order to achieve relatively small electric energy consumption for a considered transportation task. The first part of the paper investigates the relationship between a conveyor’s SEC and material flow rate for various conveyor design parameters. Then, based on multi-parameter simulations, an analysis of electric energy consumption for a belt conveyor transportation system is carried out. Finally, an energy-saving, environmentally friendly solution is presented.


2018 ◽  
Vol 77 (5) ◽  
pp. 280-287
Author(s):  
E. V. Aulov ◽  
V. A. Kuchumov ◽  
E. E. Kossov ◽  
N. N. Shirochenko

Energy efficiency of transportation process is constantly in the center of attention of specialists and managers of Russian Railways. Some of the new electric locomotives purchased under the investment project have shown unsatisfactory results on electric power consumption. According to the management of the JSC “Russian Railways”, electric locomotives EP20, designed for two types of current, have the highest specific energy consumption. These are modern electric locomotives with powerful asynchronous traction motors. Electric locomotives typically operate in passenger traffic. The purpose of the research was to analyze the accounting of energy consumption of passenger electric locomotives in the locomotive operating depots. The article provides results of a comparative statistical analysis of primary materials on the energy consumption of passenger electric locomotives EP20 and other series of electric locomotives such as EP2K DC and EP1M AC. According to the primary materials from the locomotive operational depots, it was found that passenger electric locomotives with trains of double-decker passenger cars have the highest specific energy consumption. Comparison of specific electric power consumption by electric locomotives with single-type passenger cars showed that with DC electric traction, the consumption level of the EP20 significantly exceeds the consumption of the electric locomotives EP2K; with an AC electric traction, the flow rate of the EP20 is almost equal to the specific electric power consumption of the EP1M electric locomotives. A comparative analysis of the load of EP20 electric locomotives during the maintenance of passenger trains allocated for it in the Moscow — Adler section showed that the electric locomotive was underloaded, which causes a decrease in its efficiency and, as a result, over-consumption of electricity. The use of high-power brake resistors will lead to energy consumption, which must be taken into account in the life cycle cost of EP20 electric locomotives.


Membranes ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 595
Author(s):  
Mudhar A. Al-Obaidi ◽  
Alejandro Ruiz-García ◽  
Ghanim Hassan ◽  
Jian-Ping Li ◽  
Chakib Kara-Zaïtri ◽  
...  

Reverse Osmosis (RO) has already proved its worth as an efficient treatment method in chemical and environmental engineering applications. Various successful RO attempts for the rejection of organic and highly toxic pollutants from wastewater can be found in the literature over the last decade. Dimethylphenol is classified as a high-toxic organic compound found ubiquitously in wastewater. It poses a real threat to humans and the environment even at low concentration. In this paper, a model based framework was developed for the simulation and optimisation of RO process for the removal of dimethylphenol from wastewater. We incorporated our earlier developed and validated process model into the Species Conserving Genetic Algorithm (SCGA) based optimisation framework to optimise the design and operational parameters of the process. To provide a deeper insight of the process to the readers, the influences of membrane design parameters on dimethylphenol rejection, water recovery rate and the level of specific energy consumption of the process for two different sets of operating conditions are presented first which were achieved via simulation. The membrane parameters taken into consideration include membrane length, width and feed channel height. Finally, a multi-objective function is presented to optimise the membrane design parameters, dimethylphenol rejection and required energy consumption. Simulation results affirmed insignificant and significant impacts of membrane length and width on dimethylphenol rejection and specific energy consumption, respectively. However, these performance indicators are negatively influenced due to increasing the feed channel height. On the other hand, optimisation results generated an optimum removal of dimethylphenol at reduced specific energy consumption for a wide sets of inlet conditions. More importantly, the dimethylphenol rejection increased by around 2.51% to 98.72% compared to ordinary RO module measurements with a saving of around 20.6% of specific energy consumption.


10.5219/1407 ◽  
2020 ◽  
Vol 14 ◽  
pp. 633-640
Author(s):  
Kyrylo Samoichuk ◽  
Dmytro Zhuravel ◽  
Nadiya Palyanichka ◽  
Vadim Oleksiienko ◽  
Serhii Petrychenko ◽  
...  

Homogenization is a necessary process in the production of drinking milk and most dairy products. The specific energy consumption of the most common valve homogenizers reaches 8 kW h.t-1. A promising way to reduce it is the introduction of more effective counter-jet homogenizers. The purpose of these studies is to increase the efficiency of machines of this type through fuller use of their kinetic energy. To achieve this, the design of a ring reflector was developed and experimental studies were carried out to determine its influence on the efficiency of milk fat dispersion in a counter-jet homogenizer. Calculations were made to determine the reflector’s design parameters. An installation for experimental research has been developed, in which the required milk pressure is created with the help of compressed carbon dioxide. The dispersive indices of the milk emulsion were determined by computer analysis of milk sample micrographs obtained with an optical microscope and a digital camera using Microsoft Office Excel and Microsoft Visual Studio C# software using the OpenCV Sharp library. As a result of research, the formula for defining the angle of the reflector top has been determined analytically. Experimental studies proved its validity and allowed determination of the optimal diameter. A comparison of the dependence of the degree of homogenization on the excess pressure in a counter-jet homogenizer proves a 15 – 20% increase in the degree of dispersion when using a reflector. At the same time, specific energy consumption does not increase. Comparison of the distribution curves of milk fat globules by size after counter-jet homogenization and homogenization with a reflector suggests that the average diameter of fat globules for the experimental method decreases from 0.99 to 0.83 μm. This indicates the high quality of the dispersal characteristics of the milk emulsion after processing in a counter-jet homogenizer with a reflector.


2018 ◽  
Vol 19 (1) ◽  
pp. 200-206
Author(s):  
Jr-Lin Lin ◽  
Shyh-Fang Kang

Abstract Evaluation of carbon emission hot spots for water treatment plants (WTPs) is crucial to reduce carbon emissions. This study aims to analyze carbon emission data generated at Bansin WTP following the PAS 2050 guidelines. The boundary of inventory and assessment includes water intake, purification, and distribution stages. In addition, pumping efficiency, power consumption per pump lift and specific energy consumption were used to estimate the potential of energy reduction in pumping for Bansin and Baoshan WTPs. The results have revealed that the carbon footprint of Bansin WTP is 0.39 kg CO2e/m3 in 2011. There is 95% of carbon emissions generated by pumping from the intake and distribution stages, and the use of pumping is responsible for 65% of total carbon emissions in the clarification stage. The power consumption per pump lift can be calculated to evaluate the difference between rated power and operational power. This relationship can provide information indicating to operators when to replace or maintain poorly-functioning pumps. The data on pump lift, flow rate and power can also be calculated to determine the relationship between pumping efficiency (%) and specific energy consumption (kW/Q), and then used to identify the optimum condition of pump combinations for a given production of water supply.


2021 ◽  
Vol 13 (15) ◽  
pp. 8260
Author(s):  
Weronika Kruszelnicka ◽  
Jakub Hlosta ◽  
Jan Diviš ◽  
Łukasz Gierz

The knowledge of a grinder structure, its performance parameters and characteristics of biomaterials breakage are crucial for this research whose aim is to determine the dependencies between performance parameters and comminution indicators. The aim of this study is to investigate the relationships between multi-disc mill performance parameters such as discs angular speed, batch dosing speed and comminution characteristics: power consumption, specific energy consumption, throughput and size reduction ratio. To achieve these goals, an experiment was conducted on a five-disc mill with a special monitoring system. The research program was established, with disc angular speed at different configurations and different batch dosing speeds. The results show that power consumption, specific energy consumption and size reduction ratio depend on the total increase in angular speed of discs SΔω in such a way that an increase in SΔω causes an increase in the abovementioned comminution indicators. In turn, an increase in batch dosing speed W causes an increase in throughput. The fitting curves of comminution indicators in dependence of selected performance parameters are also presented in this study.


Author(s):  
Jyotirmay Mahapatra ◽  
Vinita Kashyap ◽  
Ajay Kumar Sharma

Several advantages of rotavator including negative draft generation make it the most suitable attachment to power tiller. Many factors affect the economy and performance of power tiller which includes specific energy consumption, resourceful use of available power, produced soil conditions and blade durability. Hence a systematic design method was developed for power tiller rotavator while considering all these factors simultaneously. Specific work done by rotavator was equalized with performable work of power tiller for different combination of design and kinematics parameter. The value of design and kinematic parameters included in the previous step were limited by the extremities. These limitations were imposed so as to get desired soil conditions and blade durability. The best combination of parameters that produces the desired soil condition with minimum specific energy consumption while utilizing the available power resourcefully was selected. Other design parameters were calculated using parameters from the selected combination. Rotavator design and kinematic parameters satisfying the above objectives were calculated and found to be velocity ratio of 5.12, forward velocity of 0.41 m/s, rpm of 80.19, operating width of 7.5dm and 30 number of blades mounted in 5 number of flanges. This method of optimisation can be adopted for improved power tiller rotavator design and efficient operation. But as this method is purely theoretical; practical verification of the design is essential before adopting for large scale industrial production.


Author(s):  
O. S Kuropiatnyk

Purpose. The purpose of this work is to substantiate the optimal values of the belt conveyor parameters, at which the specific energy consumption for the cargo transportation takes on the lowest value. Methodology. The substantiation of the optimal values of the belt conveyor parameters was carried out by minimizing the function of specific energy consumption, which represents the energy consumption for the transportation of a cargo weighing 1 kg at a distance of 1 m. In the course of research, the drive force was determined using the contour bypass meth-od. In this case, the specific loads from the transported cargo, belt and roller supports were presented as functions of the belt width. To establish the optimal values of the conveyor productivity and belt speed, the belt width was presented as a function of these values, taking into account the physical and mechanical properties of the transported cargo, the design features of the roller supports and the belt angle. Findings. I obtained the dependences of specific energy consumption on the design parameters of the conveyor. Their analysis made it possible to identify the opti-mal values of the belt width, conveyor productivity, belt speed, and the optimal ratio of the last two values for dif-ferent types of transported cargo. It is noted that the results obtained can be supplemented by carrying out calcula-tions according to the formula given in this work. It has been established that the optimal value of the belt width depends only on the belt angle and on the coefficients that determine the energy losses, in particular the movement resistance coefficient of the belt; the influence of the specified coefficient increases with an increase in the belt angle. In addition, the optimal value of the belt width does not depend on the conveyor length, its productivity and belt speed. Originality. The dependences of the specific energy consumption on the design parameters of the belt conveyor were obtained, which made it possible to establish the optimal values of the belt width and the ratio of the conveyor productivity to the belt speed. Practical value. The results of this work can be used in the design of energy-efficient belt conveyors, which are characterized by the lowest specific energy consumption for cargo transportation.


Sign in / Sign up

Export Citation Format

Share Document