scholarly journals Standarization of a Protocol of Immunohistochemistry for the Detection of Brain Microglia in Wistar Rats

2017 ◽  
Vol 19 (3) ◽  
pp. 45
Author(s):  
Karol Ramírez Chan DDS, MSc, PhD ◽  
Jaime Jaime Fornaguera-Trías PhD

Objective: Standardize a protocol of immunohistochemistry that has been widely used in C57BL/6J mice to identify microglia of the central nervous system in Wistar rats.  Materials and Methods: This research activity was carried out in two parts. In the first part, a protocol of immunohistochemistry was implemented to identify microglia in the central nervous system of 6 Wistar rats. A primary antibody with reactivity to rat and a specific secondary antibody to the primary were used. Once the protocol was established in rats' brains, an immunological challenge was produced with the intraperitoneal application of lipopolysaccharide in 2 Wistar rats, in order to evidence the changes in microglia morphology.  Results and Discussion: We demonstrate that without making major modifications to the original protocol, it can also be used to identify microglia in adult Wistar rats. In the near future, this immunostaining protocol will be applied to elucidate the bidirectional interaction between the brain and the immune system, under homeostatic conditions and different physiological and pathological stimuli.

2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
Oscar Kurt Bitzer-Quintero ◽  
Ignacio González-Burgos

The central nervous system is closely linked to the immune system at several levels. The brain parenchyma is separated from the periphery by the blood brain barrier, which under normal conditions prevents the entry of mediators such as activated leukocytes, antibodies, complement factors, and cytokines. The myeloid cell lineage plays a crucial role in the development of immune responses at the central level, and it comprises two main subtypes: (1) resident microglia, distributed throughout the brain parenchyma; (2) perivascular macrophages located in the brain capillaries of the basal lamina and the choroid plexus. In addition, astrocytes, oligodendrocytes, endothelial cells, and, to a lesser extent, neurons are implicated in the immune response in the central nervous system. By modulating synaptogenesis, microglia are most specifically involved in restoring neuronal connectivity following injury. These cells release immune mediators, such as cytokines, that modulate synaptic transmission and that alter the morphology of dendritic spines during the inflammatory process following injury. Thus, the expression and release of immune mediators in the brain parenchyma are closely linked to plastic morphophysiological changes in neuronal dendritic spines. Based on these observations, it has been proposed that these immune mediators are also implicated in learning and memory processes.


1988 ◽  
Vol 14 ◽  
pp. 159-186
Author(s):  
Edwin Levy

In 1973 Niels Kaj Jerne announced an important new hypothesis about the immune system (‘IS’). That suggestion is based on several similarities between IS and the central nervous system. Jerne postulated that IS, like the nervous system, is a network.I am convinced that the description of the immune system as a functional network of lymphocytes and antibody molecules is essential to its understanding, and that the network as a whole functions in a way that is peculiar to and characteristic of the internal interactions of the elements of the immune system itself: it displays what I call eigen-behavior. (Jerne [1973), 59)This proposal has a number of implications, including some philosophical ones. Here I focus on the question whether the network hypothesis and subsequent developments shed any light on the use of teleological concepts in biology. In part one I present some of the background story of network ideas in immunology, including a reverse hypothesis to the effect that IS-Net could serve as a basis for modeling the brain. In part two I locate the teleological implications of IS-Net with respect to current mainstream discussions of teleology.


2019 ◽  
Vol 19 (1S) ◽  
pp. 39-41
Author(s):  
T M Astakhova ◽  
Ya D Karpova ◽  
G A Bozhok ◽  
N M Alabedal’karim ◽  
Yu V Lyupina ◽  
...  

The aim of the work was to compare proteasome mechanisms of the development of donor-specific tolerance (DST) to ovarian allograft in outbred Wistar rats and inbred August rats with the increased level of monoamines and stress limiting systems in the brain. In spite of DST induction in all animals, engraftment was more effective in Wistar rats. In the liver of all rats with survived allograft, the level of proteasome immune subunt LMP2, evaluated by Western blotting, was significantly higher than in control false-operated rats. This difference was more pronounced in Wistar rats. Besides, in the liver of all rats with survived allografts, the level of proteasome PA28αβ activator was higher than in control. In conclusion, the development of DST is connected with the enrichment of liver proteasome pool by immune forms containing LMP2 subunit and PA28αβ activator. This process is partially suppressed in August rats under stress conditions of the central nervous system.


2003 ◽  
Vol 5 (2) ◽  
pp. 139-153

Recent research has overcome the old paradigms of the brain as an immunologically privileged organ, and of the exclusive role of neurotransmitters and neuropeptides as signal transducers in the central nervous system. Growing evidence suggests that the signal proteins of the immune system - the cytokines - are also involved in modulation of behavior and induction of psychiatric symptoms. This article gives an overview on the nature of cytokines and the proposed mechanisms of immune-to-brain interaction. The role of cytokines in psychiatric symptoms, syndromes, and disorders like sickness behavior, major depression, and schizophrenia are discussed together with recent immunogenetic findings.


Author(s):  
S.S. Spicer ◽  
B.A. Schulte

Generation of monoclonal antibodies (MAbs) against tissue antigens has yielded several (VC1.1, HNK- 1, L2, 4F4 and anti-leu 7) which recognize the unique sugar epitope, glucuronyl 3-sulfate (Glc A3- SO4). In the central nervous system, these MAbs have demonstrated Glc A3-SO4 at the surface of neurons in the cerebral cortex, the cerebellum, the retina and other widespread regions of the brain.Here we describe the distribution of Glc A3-SO4 in the peripheral nervous system as determined by immunostaining with a MAb (VC 1.1) developed against antigen in the cat visual cortex. Outside the central nervous system, immunoreactivity was observed only in peripheral terminals of selected sensory nerves conducting transduction signals for touch, hearing, balance and taste. On the glassy membrane of the sinus hair in murine nasal skin, just deep to the ringwurt, VC 1.1 delineated an intensely stained, plaque-like area (Fig. 1). This previously unrecognized structure of the nasal vibrissae presumably serves as a tactile end organ and to our knowledge is not demonstrable by means other than its selective immunopositivity with VC1.1 and its appearance as a densely fibrillar area in H&E stained sections.


2018 ◽  
Vol 23 (1) ◽  
pp. 10-13
Author(s):  
James B. Talmage ◽  
Jay Blaisdell

Abstract Injuries that affect the central nervous system (CNS) can be catastrophic because they involve the brain or spinal cord, and determining the underlying clinical cause of impairment is essential in using the AMA Guides to the Evaluation of Permanent Impairment (AMA Guides), in part because the AMA Guides addresses neurological impairment in several chapters. Unlike the musculoskeletal chapters, Chapter 13, The Central and Peripheral Nervous System, does not use grades, grade modifiers, and a net adjustment formula; rather the chapter uses an approach that is similar to that in prior editions of the AMA Guides. The following steps can be used to perform a CNS rating: 1) evaluate all four major categories of cerebral impairment, and choose the one that is most severe; 2) rate the single most severe cerebral impairment of the four major categories; 3) rate all other impairments that are due to neurogenic problems; and 4) combine the rating of the single most severe category of cerebral impairment with the ratings of all other impairments. Because some neurological dysfunctions are rated elsewhere in the AMA Guides, Sixth Edition, the evaluator may consult Table 13-1 to verify the appropriate chapter to use.


Author(s):  
Prithiv K R Kumar

Stem cells have the capacity to differentiate into any type of cell or organ. Stems cell originate from any part of the body, including the brain. Brain cells or rather neural stem cells have the capacitive advantage of differentiating into the central nervous system leading to the formation of neurons and glial cells. Neural stem cells should have a source by editing DNA, or by mixings chemical enzymes of iPSCs. By this method, a limitless number of neuron stem cells can be obtained. Increase in supply of NSCs help in repairing glial cells which in-turn heal the central nervous system. Generally, brain injuries cause motor and sensory deficits leading to stroke. With all trials from novel therapeutic methods to enhanced rehabilitation time, the economy and quality of life is suppressed. Only PSCs have proven effective for grafting cells into NSCs. Neurons derived from stem cells is the only challenge that limits in-vitro usage in the near future.


2018 ◽  
Vol 25 (28) ◽  
pp. 3333-3352 ◽  
Author(s):  
Natalia Pessoa Rocha ◽  
Ana Cristina Simoes e Silva ◽  
Thiago Ruiz Rodrigues Prestes ◽  
Victor Feracin ◽  
Caroline Amaral Machado ◽  
...  

Background: The Renin-Angiotensin System (RAS) is a key regulator of cardiovascular and renal homeostasis, but also plays important roles in mediating physiological functions in the central nervous system (CNS). The effects of the RAS were classically described as mediated by angiotensin (Ang) II via angiotensin type 1 (AT1) receptors. However, another arm of the RAS formed by the angiotensin converting enzyme 2 (ACE2), Ang-(1-7) and the Mas receptor has been a matter of investigation due to its important physiological roles, usually counterbalancing the classical effects exerted by Ang II. Objective: We aim to provide an overview of effects elicited by the RAS, especially Ang-(1-7), in the brain. We also aim to discuss the therapeutic potential for neuropsychiatric disorders for the modulation of RAS. Method: We carried out an extensive literature search in PubMed central. Results: Within the brain, Ang-(1-7) contributes to the regulation of blood pressure by acting at regions that control cardiovascular functions. In contrast with Ang II, Ang-(1-7) improves baroreflex sensitivity and plays an inhibitory role in hypothalamic noradrenergic neurotransmission. Ang-(1-7) not only exerts effects related to blood pressure regulation, but also acts as a neuroprotective component of the RAS, for instance, by reducing cerebral infarct size, inflammation, oxidative stress and neuronal apoptosis. Conclusion: Pre-clinical evidence supports a relevant role for ACE2/Ang-(1-7)/Mas receptor axis in several neuropsychiatric conditions, including stress-related and mood disorders, cerebrovascular ischemic and hemorrhagic lesions and neurodegenerative diseases. However, very few data are available regarding the ACE2/Ang-(1-7)/Mas receptor axis in human CNS.


Sign in / Sign up

Export Citation Format

Share Document