scholarly journals Dinámica espacio-temporal del esfuerzo en una pesquería de buceo artesanal multiespecífica y sus efectos en la variabilidad de las capturas: Implicaciones para el manejo sostenible

2014 ◽  
Vol 62 (4) ◽  
pp. 1565 ◽  
Author(s):  
Helven Naranjo Madrigal ◽  
Silvia Salas Márquez

Artisanal diving fisheries are a source of income, employment and food security of coastal areas in many countries. Understanding the dynamics of these fisheries, including the spatial and temporal dynamics of fishing effort, gears and species can help to address the challenges involved in fisheries management. We aimed to analyze the differences in fishing strategies undertaken by fishers that use two different diving methods (hookah and free diving), and the conditions and their potential impacts on catches when adjustments to those strategies are applied over time. For this, detailed information of fishing operations from artisanal boats in the North Pacific coast of Costa Rica was analyzed in two fishing seasons (2007-2008 and 2011-2012). Data were collected by onboard observers (fishing site, fishing time, species composition, depth and visibility). Additionally, interviews with divers were applied to obtain information of price per species, species volume and fishing operations. From the total number of trips during both seasons, hookah diving was represented by a sample size of 70.5%, while free diving, with a sample of 69.5%. More than 15 species were identified in each fishing season. Nevertheless, three categories had substantial contributions in both seasons with differences in the proportions for each case: green lobster (<em>Panulirus gracilis</em>), octopus (<em>Octopus</em> sp.) and parrotfish (<em>Scarus perrico</em> and <em>S. ghobban</em>). It is worth noting that an important proportion of catch was retained by fishers for personal consumption purposes, including species of high commercial value. Additional night diving activity, increased the number of dives from one season to another. Besides, cooperation processes in free diving fishing operations, and changes in fishing effort between seasons, defined important changes in fishing strategies. Potential causes of changes in fishing strategies and the implications for management to ensure the sustainability of these fisheries in the long term are discussed.

2021 ◽  
Vol 288 (1942) ◽  
pp. 20201600
Author(s):  
Juliette Murgier ◽  
Matthew McLean ◽  
Anthony Maire ◽  
David Mouillot ◽  
Nicolas Loiseau ◽  
...  

Functionally distinct species (i.e. species with unique trait combinations in the community) can support important ecological roles and contribute disproportionately to ecosystem functioning. Yet, how functionally distinct species have responded to recent climate change and human exploitation has been widely overlooked. Here, using ecological traits and long-term fish data in the North Sea, we identified functionally distinct and functionally common species, and evaluated their spatial and temporal dynamics in relation to environmental variables and fishing pressure. Functionally distinct species were characterized by late sexual maturity, few, large offspring, and high parental care, many being sharks and skates that play critical roles in structuring food webs. Both functionally distinct and functionally common species increased in abundance as ocean temperatures warmed and fishing pressure decreased over the last three decades; however, functionally distinct species increased throughout the North Sea, but primarily in southern North Sea where fishing was historically most intense, indicating a rebound following fleet decommissioning and reduced harvesting. Yet, some of the most functionally distinct species are currently listed as threatened by the IUCN and considered highly vulnerable to fishing pressure. Alarmingly these species have not rebounded. This work highlights the relevance and potential of integrating functional distinctiveness into ecosystem management and conservation prioritization.


Forests ◽  
2019 ◽  
Vol 10 (9) ◽  
pp. 752
Author(s):  
Liu ◽  
Bao ◽  
Bao

Chinese pine (Pinus tabulaeformis Carr.) plays an important role in maintaining ecosystem health and stability in western Liaoning Province and the southern Horqin sand land, Northeast China, with benefits including sand fixation and soil erosion. In the context of climate change, developing a better understanding of the relationship between climate factors and growth rates of this species will be extremely valuable in guiding management activities and meeting regional conservation objectives. Here, the results based on two groups of tree-ring samples show that the radial growth of Chinese pine is controlled primarily by water conditions. The longer chronology had the highest correlation coefficient with the January–September mean self-calibrating Palmer Drought Severity Index (scPDSI); therefore, drought variability was reconstructed for the period 1859–2014. Statistical analysis showed that our model explained 41.9% of the variance in radial growth during the 1951–2014 calibration period. Extreme dry and wet events, defined as the criteria of one standard deviation less or greater than the mean value, accounted for 19.9% and 18.6% of the 156-year climate record, respectively. During the past century, the regional hydroclimate experienced significant long-term fluctuations. The dry periods occurred from the early-1900s–1930s and 1980s–2000s, and the wet periods occurred from the 1940s–1970s. The drought reconstruction was consistent with the decreasing trend of the East Asian summer monsoon since the late 1970s. The reconstructed temporal patterns in hydroclimate in western Liaoning were closely related to the large-scale climate drivers in the North Pacific and the tropical equatorial Pacific. The teleconnections were confirmed by spatial correlations between the reconstructed sequence and sea surface temperature (SST) in the North Pacific, as well as the correlations with the Pacific Decadal Oscillation (PDO) and El Niño Southern Oscillation (ENSO) indices. Aerosols played an important role in affecting drought variations over the past several decades. Moisture stress caused by global warming and interdecadal changes in the PDO will have long-term effects on the growth of pines in the study area in the future.


The Murrelet ◽  
1933 ◽  
Vol 14 (1) ◽  
pp. 7
Author(s):  
J. E. Guberlet ◽  
R. C. Miller

2021 ◽  
Author(s):  
Natasa Ravbar ◽  
Cyril Mayaud ◽  
Matej Blatnik ◽  
Metka Petrič

&lt;p&gt;Under special meteorological and hydrological circumstances, shallow karst areas and karst poljes may experience surface water overflow. As a result, surface- groundwater interaction occurs usually creating intermittent lakes. Although human settlements and activities have traditionally adapted to these natural conditions, extensive temporary floods are classified among the most common natural disasters in karst. On the other hand, intermittent lakes are considered as natural reservoirs of excess recharge and good flood regulators in the lower parts of river basins. Due to specific ecohydrological processes and environmental conditions, these areas host unique wetland ecosystems with high levels of biodiversity and provide various ecosystem services, such as ecological productivity, photosynthesis and carbon storage. Given the dynamic nature of hydrological processes in karst aquifers, a distinctive feature of the phenomena described is its high variability of occurrence and duration. Therefore, the identification, characterization as well as the determination of the spatial dimension of flood levels is a challenging task. Focusing on the Slovenian karst, a literature review and analysis of topographical and hydrological data of the selected study areas was conducted. The hydrological analyses were based on long-term monitoring data from Slovenian Environmental Agency and partly on the authors' own database of field measurements and knowledge of the areas concerned. Consequently, the conceptual framework and the key criterion for the determination and recording of areas subject to temporary flooding were developed. A systematic survey reveals the significance of the extent, duration and frequency of flooding. Evaluation results are useful to designers of various water policies and management mechanisms for flood mitigation and protection of special habitats. Observing trends in the spatial and temporal dynamics of flood levels is also valuable for understanding how and to what extent karst aquifers are vulnerable to environmental changes. Finally, the analyses also enable prediction of the effects of these changes on other parts of the environment (e.g., hydrophilic habitats).&lt;/p&gt;


Plants ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 1364
Author(s):  
Maria Ladeynova ◽  
Maxim Mudrilov ◽  
Ekaterina Berezina ◽  
Dmitry Kior ◽  
Marina Grinberg ◽  
...  

A local leaf burning causes variation potential (VP) propagation, a decrease in photosynthesis activity, and changes in the content of phytohormones in unstimulated leaves in pea plants. The VP-induced photosynthesis response develops in two phases: fast inactivation and long-term inactivation. Along with a decrease in photosynthetic activity, there is a transpiration suppression in unstimulated pea leaves, which corresponds to the long-term phase of photosynthesis response. Phytohormone level analysis showed an increase in the concentration of jasmonic acid (JA) preceding a transpiration suppression and a long-term phase of the photosynthesis response. Analysis of the spatial and temporal dynamics of electrical signals, phytohormone levels, photosynthesis, and transpiration activity showed the most pronounced changes in the more distant leaf from the area of local stimulation. The established features are related to the architecture of the vascular bundles in the pea stem.


Sign in / Sign up

Export Citation Format

Share Document