scholarly journals The easternmost tropical Pacific. Part II: Seasonal and intraseasonal modes of atmospheric variability

2016 ◽  
Vol 64 (1) ◽  
pp. 23 ◽  
Author(s):  
Jorge A. Amador ◽  
A. M. Durán-Quesada ◽  
E. R. Rivera ◽  
G. Mora ◽  
F. Sáenz ◽  
...  

<p>This is Part II of a two-part review about climate and climate variability focused on the Eastern Tropical Pacific (ETP) and the Caribbean Sea (CS). Both parts are aimed at providing oceanographers, marine biologists, and other ocean scientists, a guiding base for ocean-atmosphere interaction processes affecting the CS, the ETP, and the waters of Isla del Coco. Isla del Coco National Park is a Costa Rican World Heritage site. Part I analyzed the mean fields for both basins and a larger region covering 25º S - 35º N, 20º W - 130º W. Here we focus on a smaller area (65º W - 95º W, 0º - 20º N), as a complement to Part 1. Incoming solar radiation and surface energy fluxes reveal the complex nature of the ETP and CS for convective activity and precipitation on seasonal and intraseasonal time scales. Both regions are relevant as sources of evaporation and the associated moisture transport processes. The American Monsoon System influences the climate and climate variability of the ETP and CS, however, the precise way systems affect regional precipitation and transport of moisture, within the Intra Americas Sea (IAS) are not clear. Although the Caribbean Low-Level Jet (CLLJ) is known to act as a conveyor belt for moisture transport, intraseasonal and seasonal modes of the CLLJ and their interactions with other IAS systems, have to be further investigated. Trans-isthmic jets, exert a variable seasonal wind stress force over the ocean surface co-generating regions of great marine productivity. Isolated convection, the seasonal migration of the Intertropical Convergence Zone, the hurricane season, the Mid-Summer Drought, the seasonal and intraseasonal behavior of low-level jets and their interactions with transients, and the southward incursion of cold fronts contribute to regional seasonal precipitation. Many large-scale systems, such as El Niño-Southern Oscillation, the Atlantic Multidecadal Oscillation and the Madden-Julian Oscillation (MJO, also influence the variability of precipitation by modulating regional features associated with convection and precipitation. Monthly tropical storm (TS) activity in the CS and ETP basins is restricted to the period May-November, with very few cases in December. The CS presents TS peak activity during August, as well as for the number of hurricanes and major hurricanes, in contrast to the ETP that shows the same features during September.</p><div> </div>

2004 ◽  
Vol 39 ◽  
pp. 585-594 ◽  
Author(s):  
Susan Kaspari ◽  
Paul A. Mayewski ◽  
Daniel A. Dixon ◽  
Vandy Blue Spikes ◽  
Sharon B. Sneed ◽  
...  

AbstractThirteen annually resolved accumulation-rate records covering the last ~200 years from the Pine Island–Thwaites and Ross drainage systems and the South Pole are used to examine climate variability over West Antarctica. Accumulation is controlled spatially by the topography of the ice sheet, and temporally by changes in moisture transport and cyclonic activity. A comparison of mean accumulation since 1970 at each site to the long-term mean indicates an increase in accumulation for sites located in the western sector of the Pine Island–Thwaites drainage system. Accumulation is negatively associated with the Southern Oscillation Index (SOI) for sites near the ice divide, and periods of sustained negative SOI (1940–42, 1991–95) correspond to above-mean accumulation at most sites. Correlations of the accumulation-rate records with sea-level pressure (SLP) and the SOI suggest that accumulation near the ice divide and in the Ross drainage system may be associated with the mid-latitudes. The post-1970 increase in accumulation coupled with strong SLP–accumulation-rate correlations near the coast suggests recent intensification of cyclonic activity in the Pine Island– Thwaites drainage system.


2021 ◽  
Vol 248 ◽  
pp. 105243
Author(s):  
Juliet Perdigón-Morales ◽  
Rosario Romero-Centeno ◽  
Paulina Ordoñez ◽  
Raquel Nieto ◽  
Luis Gimeno ◽  
...  

2012 ◽  
Vol 63 (1) ◽  
pp. 34 ◽  
Author(s):  
Ana Redondo-Rodriguez ◽  
Scarla J. Weeks ◽  
Ray Berkelmans ◽  
Ove Hoegh-Guldberg ◽  
Janice M. Lough

Understanding the nature and causes of recent climate variability on the Great Barrier Reef (GBR), Australia, is fundamental to assessing the impacts of future climate change on this complex ecosystem. New analytical tools, improved data quality and resolution, longer time-series and new variables provide an opportunity to re-assess existing paradigms. Here, we examined sea surface temperature (SST), sea level pressure, surface winds, sea surface height and ocean currents for the period from 1948 to 2009. We focussed on the relationship between GBR surface climate and the wider tropical Pacific, and the influence of El Niño-Southern Oscillation (ENSO) events. Also, for the first time, we investigated the impact of the El Niño/La Niña Modoki phenomenon. Although neither type of ENSO event is a primary driver of inter-annual climate variability on the GBR, their influence is conspicuous. Classical ENSO events have a strong signature in the atmospheric circulation in the northern GBR but no significant relationship with SSTs and the opposite applies for the southern GBR. Conversely, El Niño/La Niña Modoki is significantly related to summer SSTs on the northern GBR, but not for the southern GBR. This study enhances our understanding of tropical Pacific and GBR climate drivers and will improve future predictions of change in climate variables that are likely to impact on the complex GBR ecosystem.


2016 ◽  
Author(s):  
Ana María Durán-Quesada ◽  
Luis Gimeno ◽  
Jorge Amador

Abstract. A climatology of moisture sources linked with Central American precipitation was computed based upon Lagrangian trajectories for the analysis period 1980–2013. The response of the annual cycle of precipitation in terms of moisture supply from the sources was analysed. Regional precipitation patterns are mostly driven by moisture transport from the Caribbean Sea (CS). Moisture supply from the Eastern Tropical Pacific (ETPac) and Northern South America (NSA) exhibits a strong seasonal pattern but weaker compared to CS. The regional distribution of rainfall is largely influenced by a local signal associated with surface fluxes during the first part of the rainy season, whereas large scale dynamics forces rainfall during the second part of the rainy season. The Caribbean Low Level Jet (CLLJ) and the Chocó Jet (CJ) are the main conveyors of regional moisture, being key to define the seasonality of large scale forced rainfall. Therefore, interannual variability of rainfall is highly dependent of the regional LLJs to the atmospheric variability modes. The El Niño-Southern Oscillation (ENSO) was found to be the dominant mode affecting moisture supply for Central American precipitation via the modulation of regional phenomena. Evaporative sources show opposite anomaly patterns during warm and cold ENSO phases, as a result of the strengthening and weakening, respectively, of the CLLJ during the summer months. Trends in both moisture supply and precipitation over the last three decades were computed, results suggest that precipitation trends are not homogeneous for Central America. Trends in moisture supply from the sources identified show a marked north-south seesaw, with an increasing supply from the Caribbean Sea to northern Central America. Long term trends in moisture supply are larger for the transition months (March and October). This might have important implications given that any changes in the conditions seen during the transition to the rainy season may induce stronger precipitation trends.


2017 ◽  
Vol 8 (1) ◽  
pp. 147-161 ◽  
Author(s):  
Ana María Durán-Quesada ◽  
Luis Gimeno ◽  
Jorge Amador

Abstract. A climatology of moisture sources linked with Central American precipitation was computed based upon Lagrangian trajectories for the analysis period 1980–2013. The response of the annual cycle of precipitation in terms of moisture supply from the sources was analysed. Regional precipitation patterns are mostly driven by moisture transport from the Caribbean Sea (CS). Moisture supply from the eastern tropical Pacific (ETPac) and northern South America (NSA) exhibits a strong seasonal pattern but weaker compared to CS. The regional distribution of rainfall is largely influenced by a local signal associated with surface fluxes during the first part of the rainy season, whereas large-scale dynamics forces rainfall during the second part of the rainy season. The Caribbean Low Level Jet (CLLJ) and the Chocó Jet (CJ) are the main conveyors of regional moisture, being key to define the seasonality of large-scale forced rainfall. Therefore, interannual variability of rainfall is highly dependent of the regional LLJs to the atmospheric variability modes. The El Niño–Southern Oscillation (ENSO) was found to be the dominant mode affecting moisture supply for Central American precipitation via the modulation of regional phenomena. Evaporative sources show opposite anomaly patterns during warm and cold ENSO phases, as a result of the strengthening and weakening, respectively, of the CLLJ during the summer months. Trends in both moisture supply and precipitation over the last three decades were computed, results suggest that precipitation trends are not homogeneous for Central America. Trends in moisture supply from the sources identified show a marked north–south seesaw, with an increasing supply from the CS Sea to northern Central America. Long-term trends in moisture supply are larger for the transition months (March and October). This might have important implications given that any changes in the conditions seen during the transition to the rainy season may induce stronger precipitation trends.


2017 ◽  
Vol 30 (16) ◽  
pp. 6329-6350 ◽  
Author(s):  
Robert J. Allen ◽  
Mahesh Kovilakam

Observations show the tropical belt has widened over the past few decades, a phenomenon associated with poleward migration of subtropical dry zones and large-scale atmospheric circulation. Coupled climate models also simulate tropical belt widening, but less so than observed. Reasons for this discrepancy, and the mechanisms driving the expansion remain uncertain. Here, the role of unforced, natural climate variability—particularly natural sea surface temperature (SST) variability—in recent tropical widening is shown. Compared to coupled ocean–atmosphere models, atmosphere-only simulations driven by observed SSTs consistently lead to larger rates of tropical widening, especially in the Northern Hemisphere (NH), highlighting the importance of recent SST evolution. Assuming the ensemble mean SSTs from historical simulations accurately represent the externally forced response, the observed SSTs can be decomposed into a forced and an unforced component. Targeted simulations with the Community Atmosphere Model, version 5 (CAM5), show that natural SST variability accounts for nearly all of the widening associated with recent SST evolution. This is consistent with the similarity of the unforced SSTs to the observed SSTs, both of which resemble a cold El Niño–Southern Oscillation/Pacific decadal oscillation (ENSO/PDO)-like SST pattern, which is associated with a wider tropical belt. Moreover, CAM5 coupled simulations with observed central to eastern tropical Pacific SSTs yield more than double the rate of widening compared to analogous simulations without prescribed tropical Pacific SSTs and reproduce the magnitude of tropical widening in atmosphere-only simulations. The results suggest that the bulk of recent tropical widening, particularly in the NH, is due to unforced, natural SST variability, primarily related to recent ENSO/PDO variability.


2019 ◽  
Vol 32 (14) ◽  
pp. 4547-4566
Author(s):  
Kyung-Sook Yun ◽  
Axel Timmermann

Abstract Several climate field reconstruction methods assume stationarity between the leading patterns of variability identified during the instrumental calibration period and the reconstruction period. We examine how and to what extent this restrictive assumption may generate uncertainties in reconstructing past tropical Pacific climate variability. Based on the Last Millennium (850–2005 CE) ensemble simulations conducted with the Community Earth System Model and by developing a series of pseudoproxy reconstructions for different calibration periods, we find that the overall reconstruction skill for global and more regional-scale climate indices depends significantly on the magnitude of externally forced global mean temperature variability during the chosen calibration period. This effect strongly reduces the fidelity of reconstructions of decadal to centennial-scale tropical climate variability, associated with the interdecadal Pacific oscillation (IPO) and centennial-scale temperature shifts between the Medieval Climate Anomaly (MCA) and the Little Ice Age (LIA). In contrast, our pseudoproxy-based analysis demonstrates that reconstructions of interannual El Niño–Southern Oscillation (ENSO) variability are more robust and less affected by changes in calibration period.


Water ◽  
2021 ◽  
Vol 13 (22) ◽  
pp. 3150
Author(s):  
Martha Bastidas-Salamanca ◽  
Juan Gabriel Rueda-Bayona

The need for reducing the CO2 emissions and fossil fuel dependence of several countries generated a growing interest for the Renewables. The Caribbean Sea is characterized by persistent and high magnitude winds, which suggest an important source of offshore wind energy. Recent studies reported that the Colombian Caribbean has a relevant opportunity for developing the offshore wind technology which could complement the energy production when the hydroelectric system is under low generation due to persistent dry conditions generated by El Niño events. The offshore wind energy may complement the energy offer of Colombia. Hence, understanding the impact of climate variability events in the Caribbean over the wind magnitude, contributes to the knowledge of the resource availability for a better planning of future offshore wind farms. In this sense, this study analyzed 39 years of Reanalysis wind data through a time series analysis of the Caribbean to identify the lowest wind speed velocities and when and why they occurred. The results showed that winds of the study area represented by the Caribbean Low level, showed the lowest wind speeds in the short, mid, and long term due to the influence of the seasons, El Niño-Southern Oscillation (ENSO) and the Atlantic Multidecadal Oscillation (AMO).


2012 ◽  
Vol 1 (1) ◽  
Author(s):  
Johnny Chavarría Viteri ◽  
Dennis Tomalá Solano

La variabilidad climática es la norma que ha modulado la vida en el planeta. Este trabajo demuestra que las pesquerías y acuicultura costera ecuatorianas no son la excepción, puesto que tales actividades están fuertemente influenciadas por la variabilidad ENSO (El Niño-Oscilación del Sur) y PDO (Oscilación Decadal del Pacífico), planteándose que la señal del cambio climático debe contribuir a esta influencia. Se destaca también que, en el análisis de los efectos de la variabilidad climática sobre los recursos pesqueros, el esfuerzo extractivo también debe ser considerado. Por su parte, la acción actual de la PDO está afectando la señal del cambio climático, encontrándose actualmente en fases opuestas. Se espera que estas señales entren en fase a finales de esta década, y principalmente durante la década de los 20 y consecuentemente se evidencien con mayor fuerza los efectos del Cambio Climático. Palabras Clave: Variabilidad Climática, Cambio Climático, ENSO, PDO, Pesquerías, Ecuador. ABSTRACT Climate variability is the standard that has modulated life in the planet. This work shows that the Ecuadorian  fisheries and aquaculture are not the exception, since such activities are strongly influenced by ENSO variability (El Niño - Southern Oscillation) and PDO (Pacific Decadal Oscillation), considering that the signal of climate change should contribute to this influence. It also emphasizes that in the analysis of the effects of climate variability on the fishing resources, the extractive effort must also be considered. For its part, the current action of the PDO is affecting the signal of climate change, now found on opposite phases. It is hoped that these signals come into phase at the end of this decade, and especially during the decade of the 20’s and more strongly evidencing the effects of climate change. Keywords: Climate variability, climate change, ENSO (El Niño - Southern Oscillation) and PDO  (Pacific Decadal Oscillation); fisheries, Ecuador. Recibido: mayo, 2012Aprobado: agosto, 2012


Sign in / Sign up

Export Citation Format

Share Document