INVESTIGATION OF SOW LENTIL REACTION TO IONIZED ALKALINE WATER DURING EARLY STAGES OF ONTOGENESIS

Author(s):  
Regina MALINAUSKAITĖ ◽  
Edvardas KAZLAUSKAS

Plant physiological processes related to plant growth and development strongly depends on the environmental stress factors. Response to stress appears as a complex of different reactions with a particular feedback on plants. Influence of ionized alkaline water to sow lentil physiological reactions was investigated by analyzing changes in biomass accumulation, assimilates partitioning and pigment content. Ionized alkaline water at (8.4 pH) was applied during 6–7 and 8–9 leaves development stage. According to experiment results, at the latest stage of investigation, ionized alkaline water increased lens dry matter content more than 1.44 times. During experimental time increase in dry matter content was 13.96 %, when control plants gained only 3.47 %. Ionized alkaline water application resulted in 8.58 % significantly higher root dry matter content compare to control variant. Results of our experiment revealed the significant effect of ionized alkaline water to chlorophyll content. Chlorophyll a and chlorophyll b in control plants had a tendency to decline, whereas in experimental variant with ionized water, increase in pigment concentration was observed.

2019 ◽  
Vol 37 ◽  
Author(s):  
F.H. KRENCHINSKI ◽  
V.G.C. PEREIRA ◽  
L.H.S. ZOBIOLE ◽  
A.J.P. ALBRECHT ◽  
L.P. ALBRECHT ◽  
...  

ABSTRACT: Control of Conyza spp. prior to soybean sowing has faced difficulties because of the resistance cases in Brazil, hence new herbicides as halauxifen-methyl + diclosulam are important to manage this specie. The objective of this research was to evaluate the effectiveness of the herbicide halauxifen-methyl + diclosulam applied at pre-planting of soybean. The experiments were set up in three locations in Paraná State, Brazil, in the 2015/2016 season. The herbicide halauxifen-methyl + diclosulam was associated with glyphosate and compared to other commercial herbicide to Conyza spp. control. The application occurred 15 days before soybean sowing, in plants of Conyza spp. with an average height of 20-35 cm in the three areas. None of the treatments promoted Conyza spp. control above 90%, when soybean was at the V1 stage; however, the findings showed that halauxifen-methyl + diclosulam promoted better control in comparison to the other treatments. The control reached >90% at V3 soybean development stage, in which treatments containing glyphosate + halauxifen-methyl + diclosulam were more effective than the other treatments. In addition, treatments with glyphosate + halauxifen-methyl + diclosulam decreased dry matter content of Conyza spp. between 87 and 93%, depending on the location, when compared to the control. The burndown treatment to Conyza spp. with glyphosate + halauxifen-methyl + diclosulam did not decrease soybean yield, and it was always higher than the untreated check.


2020 ◽  
Vol 38 (2) ◽  
pp. 175-184
Author(s):  
André Luiz B da Cunha ◽  
Francisco Célio M Chaves ◽  
Cristiaini Kano ◽  
Ítalo G Braga ◽  
Marcelo R de Oliveira

ABSTRACT Knowing about the nutrient uptake during plant cycle is essential for nutrient management decisions. We evaluated dry matter accumulation and nutrient demand, and it to determine the uptake curves, the ideal phase for management, and element extraction order for yard long beans. The experiment was carried out in a greenhouse. The experimental design was completely randomized, with eight collection periods, at 10, 20, 30, 40, 50, 60, 70 and 80 days after emergence (DAE), and four replicates. For each period, destructive sampling was performed and the sample’s dry matter content was determined, so that it could be used to estimate macro- and micronutrient contents. When significant, nonlinear models were adjusted to explain dry matter accumulation and nutrient uptake. The sigmoidal equation was the model which best depicted the growth curve for yard long bean, which reached a maximum biomass accumulation of 177.5 g plant-¹ at 80 DAE. The crop's most demanding phase in terms of nutritional requirements is from 20 to 45 DAE, which is the ideal phase for nutrient management. The element extraction order at the end of the plant's cycle was K>Ca=N>S=P>Mg (macronutrients) with values of 2,668.3 mg plant-¹, 2,331.1 mg plant-¹, 2,279.2 mg plant-¹, 507.5 mg plant-¹, 496.3 mg plant-¹ and 213.2 mg plant-¹, and Fe>B>Zn>Mn>Cu (micronutrients), with 10,933.1 µg plant-¹, 6,310.8 µg plant-¹, 4,746.8 µg plant-¹, 2,854.1 µg plant-¹ and 717.1 µg plant-¹, respectively.


2009 ◽  
Vol 57 (2) ◽  
pp. 119-125
Author(s):  
G. Hadi

The dry matter and moisture contents of the aboveground vegetative organs and kernels of four maize hybrids were studied in Martonvásár at five harvest dates, with four replications per hybrid. The dry matter yield per hectare of the kernels and other plant organs were investigated in order to obtain data on the optimum date of harvest for the purposes of biogas and silage production.It was found that the dry mass of the aboveground vegetative organs, both individually and in total, did not increase after silking. During the last third of the ripening period, however, a significant reduction in the dry matter content was sometimes observed as a function of the length of the vegetation period. The data suggest that, with the exception of extreme weather conditions or an extremely long vegetation period, the maximum dry matter yield could be expected to range from 22–42%, depending on the vegetation period of the variety. The harvest date should be chosen to give a kernel moisture content of above 35% for biogas production and below 35% for silage production. In this phenophase most varieties mature when the stalks are still green, so it is unlikely that transport costs can be reduced by waiting for the vegetative mass to dry.


2020 ◽  
pp. 16-19
Author(s):  
Е.В. Янченко

Цель исследований – дать оценку сохраняемости и болезнеустойчивости современных сортов и гибридов моркови столовой и определить корреляционные зависимости влияния биохимических показателей качества на сохраняемость и степень поражения моркови столовой различными видами болезней в процессе хранения. Исследования проводились в 2011–2016 годах во ВНИИО – филиале ФГБНУ ФНЦО по общепринятым методикам. В биохимической лаборатории отдела земледелия и агрохимии содержание сухого вещества определяли высушиванием до абсолютно сухого веса, общего сахара – по Бертрану, аскорбиновой кислоты – по Мурри, нитраты – ионоселективным методом. При характеристике моркови столовой важнейший показатель, определяющий его качество – количество сухого вещества и сахаров. В процессе хранения были выявлены следующие болезни моркови: серая гниль (Botrytis cinerea Pers. ex Fr.), белая гниль (Sclerotinia sclerotiorum (Lib.)), белая парша (Rhizoctonia carotae Rad.), альтернариоз (Alternaria radicina M., Dr. et E.). В большей степени сортообразцы моркови столовой поражались серой гнилью. Лучшими по сохраняемости сортообразцами были Корсар (94,6%), F1Берлин (94,5%), Берликум Роял (94,1%) и F1 Звезда (94%). Сохраняемость у зарубежных сортов и гибридов моркови столовой была немного выше, чем у отечественных (на 0,4%) как за счет меньшей величины убыли массы (6,3% против 6,4%), так и потерь от болезней (1,6% против 1,9%). Сохраняемость корнеплодов моркови находится в прямой корреляционной зависимости от содержания сухого вещества (r=+0,41), каротиноидов (r=+0,39), моносахаров (r­=+0,30) и суммы сахаров (r=+0,27). Проявление серой гнили находится в обратной корреляционной связи с содержанием сухого вещества и каротиноидов (r=-0,37 и r=-0,35 соответственно), белой парши – в прямой корреляции с содержанием сухого вещества , моносахаров и дисахаров (r= +0,21; r= +0,39; r= -0,41 соответственно), белой гнили в обратной корреляционной связи с содержанием сухого вещества, моносахаров и дисахаров. The purpose of the research is to assess the persistence and disease resistance of modern varieties and hybrids of carrots and to determine the correlation between the influence of biochemical quality indicators on the persistence and degree of damage to carrots by various types of diseases during storage. The research was conducted in 2011–2016 at ARRIVG – branch of FSBSI FSVC, according to generally accepted methods. In the biochemical laboratory of the Department of Agriculture and Agrochemistry, the dry matter content was determined by drying to absolutely dry weight, total sugar – by Bertran, ascorbic acid – by Murri, nitrates – by the ion-selective method. When describing carrots, the most important indicator that determines its quality is the amount of dry matter and sugars. During storage, the following diseases of carrots were detected: gray rot (Botrytis cinerea Pers. ex Fr.), white rot (Sclerotinia sclerotiorum (Lib.), white scab (Rhizoctonia carotae Rad.), alternariasis (Alternaria radicina M., Dr. et E.). To a greater extent, varieties of table carrots were affected by gray rot. The best preserved varieties were Corsar (94.6%), F1 Berlin (94.5%), Berlicum Royal (94.1%) and F1 Zvezda (94%). The persistence of foreign varieties and hybrids of table carrots was slightly higher than that of domestic ones by 0.4%. both due to a smaller amount of weight loss (6.3% vs. 6.4%) and losses from diseases (1.6% vs. 1.9%). The persistence of carrot root crops is directly correlated with the content of dry matter (r=+0.41), carotenoids (r=+0.39), monosaccharides (r=+0.30) and the amount of sugars (r=+0.27). The manifestation of gray rot is in inverse correlation with the content of dry matter and carotenoids (r=-0.37 and r=-0.35, respectively), white scab is in direct correlation with the content of dry matter (r= +0.21; r= +0.39; r= –0.41, respectively), white rot is in inverse correlation with the content of dry matter, monosaccharides and disaccharides.


2017 ◽  
Vol 43 (8) ◽  
pp. 1234
Author(s):  
Dao-Bin TANG ◽  
Jian-Gang AN ◽  
Yi DING ◽  
Hui BAI ◽  
Kai ZHANG ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document