scholarly journals CORROSION EFFECT OF ANIMAL SLURRY ON LOW CARBON S235JR STEEL AT 333 K

Author(s):  
Tomasz LIPINSKI

Low-carbon steels are often used for materials in the construction of machines and equipment for agricultural. One of the most important factors constructional material is corrosion resistance, first of all in demanding animal environment. Equipment with low carbon steel can be easy join by quickly welding at a low construction price, but one with the serious problem in aggressive environment is their corrosion resistance. A few corrosion processes in crevices and awkward corners can be avoided at the design stage (low roughness parameters, round-section and other). But still the construction material is exposed to corrosion. Slurry is a mixture of dung and urine. The aggressive corrosive constituents in slurry are urea, uric acid, naturally excreted chloride and as well as ammonia or ammonium salts. The main aim of this research is to investigate corrosion resistance in different time (48, 96, 144, 192, 240, 288, 336 hours). For this used weight loss of test samples and its profile roughness. The research was conducted on low carbon steel in grade S235JR in natural animal slurry at 333 K. Corrosion tests confirmed that the research this steel in animal slurry as corrosive environments is characterized through proportionate to time corrosion process whose measure may be surface roughness. In industrial practice roughness parameters for all the research times can be used for determine the stage and size of steel corrosion.

2021 ◽  
Vol 1046 ◽  
pp. 143-150
Author(s):  
Roland Tolulope Loto

Application of sustainable chemical compounds for corrosion protection of carbon steels employed in H2O formed petrochemical drilling fluid environment (WPDF) is an effective alternative to toxic chemical compounds. The protection performance of calciofon (CF) and rosmarinus officinalis (RS) on low carbon steel (LST) in WPDF was studied with potentiodynamic polarization technique and optical microscopic characterization. Results output depict CF and RS performed adequately at specific inhibitor concentrations with average inhibition performance above 80% for CG and 90% for RS. CG exhibited mixed type inhibition effect compared to RS which exhibited anodic inhibition. The polarization curves obtained in the presence of both compounds showed they induce passivation of LST surface after anodic polarization before breakdown at the transpassive region from the lowest to highest concentration inhibitor concentrations due to their film forming and adsorption characteristics. This observation was corroborated from the protected steel surfaces which contrasts the non-protected control steel specimen which exhibited severe surface deterioration, corrosion pits and numerous furrows.


2019 ◽  
Vol 1 (1) ◽  
pp. 425-432
Author(s):  
Tomasz Lipiński ◽  
Dariusz Karpisz

Abstract Austenitic stainless steels are often used for a materials in the construction of machines and equipment for agricultural and for industrial construction. One of the most important factors constructional material is corrosion resistance. Equipment with austenitic stainless steel can be easy join by quickly welding at a not to high construction price, but one with the serious problem in aggressive environment is their corrosion resistance. A few corrosion processes in crevices and awkward corners can be avoided at the design stage (low roughness parameters, round-section and other). But still the construction material is exposed to corrosion. These steels often come into contact with an aggressive environment based on nitric acid. The main aim of this research is to investigate corrosion resistance in different time (48, 96, 144, 192, 240, 288, 336 hours). For this used weight loss of test samples and its profile roughness. The research was conducted on austenitic stainless steel in grade in Nitrate acid at 333 K. Corrosion tests confirmed that the research this steel in 65% nitrate acid as a corrosive environments is characterized through proportionate to time corrosion process whose measure may be surface roughness. In industrial practice roughness parameters for all the research times can be used for determine the stage and size of steel corrosion.


Alloy Digest ◽  
1968 ◽  
Vol 17 (8) ◽  

Abstract B and W IRON is a thoroughly killed, low carbon steel having a combination of ductility, toughness and high magnetic permeability. It is recommended for applications where good magnetic characteristics are of primary significance, such as in the manufacture of electric motor and generator housings. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: Fe-35. Producer or source: Babcock & Wilcox Company.


Alloy Digest ◽  
1987 ◽  
Vol 36 (2) ◽  

Abstract SAE 1020 is a low-carbon steel combining good machinability, workability and weldability. It is carburized for use in case-hardened components and it is used for a wide range of applications in the hot-worked, cold-worked, normalized or quenched-and-tempered conditions. Its many uses include bolts, rods, plate applications, machinery components, case-hardened parts, spinning tools and trimming dies. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as fracture toughness. It also includes information on low temperature performance and corrosion resistance as well as heat treating, machining, joining, and surface treatment. Filing Code: CS-113. Producer or source: Carbon steel mills.


Alloy Digest ◽  
1987 ◽  
Vol 36 (6) ◽  

Abstract WEIRKOTE PLUS is a Galfan-coated sheet steel. The sheet is conventional low-carbon steel normally used for galvanized sheets and strip. This digest will concentrate on the characteristics and properties of the Galfan coating which is nominally a 95% zinc-5% aluminum alloy. The coating on Weirkote Plus is ideal for a variety of tough applications. It is excellent for products that require deep drawing and it combines extra corrosion resistance with superior formability. This datasheet provides information on composition and physical properties. It also includes information on corrosion resistance as well as forming, joining, and surface treatment. Filing Code: Zn-41. Producer or source: Weirton Steel Corp.


Author(s):  
Alaa Fahmy ◽  
Mansour El Sabbagh ◽  
Mahmoud Bedair ◽  
Amr Gangan ◽  
Mohsen El-Sabbah ◽  
...  

2017 ◽  
Vol 740 ◽  
pp. 93-99
Author(s):  
Muhammad Hafizuddin Jumadin ◽  
Bulan Abdullah ◽  
Muhammad Hussain Ismail ◽  
Siti Khadijah Alias ◽  
Samsiah Ahmad

Increase of soaking time contributed to the effectiveness of case depth formation, hardness properties and carbon content of carburized steel. This paper investigates the effect of different soaking time (7-9 hours) using powder and paste compound to the carburized steel. Low carbon steels were carburized using powder and paste compound for 7, 8 and 9 hours at temperature 1000°C. The transformation of microstructure and formation carbon rich layer was observed under microscope. The microhardness profiles were analyzed to investigate the length of case depth produced after the carburizing process. The increment of carbon content was considered to find the correlation between types of carburizing compound with time. Results shows that the longer carburized steel was soaked, the higher potential in formation of carbon rich layer, case depth and carbon content, which led to better hardness properties for carburized low carbon steel. Longer soaking time, 9 hours has a higher dispersion of carbon up to 41%-51% compare to 8 hours and 7 hours. By using paste carburizing, it has more potential of carbon atom to merge the microstructure to transform into cementite (1.53 wt% C) compare to powder (0.97 wt% C), which increases the hardness of carburized steel (13% higher).


1987 ◽  
Vol 109 (3) ◽  
pp. 257-264 ◽  
Author(s):  
E. M. Kopalinsky ◽  
P. L. B. Oxley

Experiments show that the cold working of low carbon steel work materials can improve their machinability by reducing cutting forces and improving surface finish and tool life. The somewhat paradoxical result of reducing cutting forces by cold working a material so that its hardness is increased is explained in this paper by using a machining theory which takes account of the flow stress properties of the work material and can thus allow for the effects of cold working.


2012 ◽  
Vol 20 (6) ◽  
pp. 70-76 ◽  
Author(s):  
Dr.Sami Abualnoun Ajeel ◽  
Haitham Mohammed Waadulah ◽  
Dehia AbdAlkader Sultan

MRS Advances ◽  
2017 ◽  
Vol 2 (62) ◽  
pp. 3909-3915
Author(s):  
Héctor M. Barbosa Cásarez ◽  
Araceli Espinoza Vázquez ◽  
Francisco J. Rodríguez-Gomez

AbstractPhenylcoumarin glucoside (4-PC) is a compound extracted from the plant Hintona latiflora and was studied as inhibitor for AISI 1018 steel corrosion in 3% NaCl solution using potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) techniques, which may find application as eco-friendly corrosion inhibitors. The 4-PC provides inhibitor properties that protect AISI 1018 low carbon steel against corrosion at low concentrations (5 ppm) obtained by EIS. Polarization studies showed that the inhibitor was of mixed type. The inhibition efficiency by the two electrochemical techniques shows similar results. The inhibitor adsorption was demonstrated to be a combined process (physisorption and chemisorption) according to the Langmuir isotherm.


Sign in / Sign up

Export Citation Format

Share Document