Comparison of the Protection Performance of Calciofon and Rosmarinus Officinalis on Low Carbon Steel Corrosion in Petrochemical Drilling Fluid

2021 ◽  
Vol 1046 ◽  
pp. 143-150
Author(s):  
Roland Tolulope Loto

Application of sustainable chemical compounds for corrosion protection of carbon steels employed in H2O formed petrochemical drilling fluid environment (WPDF) is an effective alternative to toxic chemical compounds. The protection performance of calciofon (CF) and rosmarinus officinalis (RS) on low carbon steel (LST) in WPDF was studied with potentiodynamic polarization technique and optical microscopic characterization. Results output depict CF and RS performed adequately at specific inhibitor concentrations with average inhibition performance above 80% for CG and 90% for RS. CG exhibited mixed type inhibition effect compared to RS which exhibited anodic inhibition. The polarization curves obtained in the presence of both compounds showed they induce passivation of LST surface after anodic polarization before breakdown at the transpassive region from the lowest to highest concentration inhibitor concentrations due to their film forming and adsorption characteristics. This observation was corroborated from the protected steel surfaces which contrasts the non-protected control steel specimen which exhibited severe surface deterioration, corrosion pits and numerous furrows.

Author(s):  
Tomasz LIPINSKI

Low-carbon steels are often used for materials in the construction of machines and equipment for agricultural. One of the most important factors constructional material is corrosion resistance, first of all in demanding animal environment. Equipment with low carbon steel can be easy join by quickly welding at a low construction price, but one with the serious problem in aggressive environment is their corrosion resistance. A few corrosion processes in crevices and awkward corners can be avoided at the design stage (low roughness parameters, round-section and other). But still the construction material is exposed to corrosion. Slurry is a mixture of dung and urine. The aggressive corrosive constituents in slurry are urea, uric acid, naturally excreted chloride and as well as ammonia or ammonium salts. The main aim of this research is to investigate corrosion resistance in different time (48, 96, 144, 192, 240, 288, 336 hours). For this used weight loss of test samples and its profile roughness. The research was conducted on low carbon steel in grade S235JR in natural animal slurry at 333 K. Corrosion tests confirmed that the research this steel in animal slurry as corrosive environments is characterized through proportionate to time corrosion process whose measure may be surface roughness. In industrial practice roughness parameters for all the research times can be used for determine the stage and size of steel corrosion.


2017 ◽  
Vol 740 ◽  
pp. 93-99
Author(s):  
Muhammad Hafizuddin Jumadin ◽  
Bulan Abdullah ◽  
Muhammad Hussain Ismail ◽  
Siti Khadijah Alias ◽  
Samsiah Ahmad

Increase of soaking time contributed to the effectiveness of case depth formation, hardness properties and carbon content of carburized steel. This paper investigates the effect of different soaking time (7-9 hours) using powder and paste compound to the carburized steel. Low carbon steels were carburized using powder and paste compound for 7, 8 and 9 hours at temperature 1000°C. The transformation of microstructure and formation carbon rich layer was observed under microscope. The microhardness profiles were analyzed to investigate the length of case depth produced after the carburizing process. The increment of carbon content was considered to find the correlation between types of carburizing compound with time. Results shows that the longer carburized steel was soaked, the higher potential in formation of carbon rich layer, case depth and carbon content, which led to better hardness properties for carburized low carbon steel. Longer soaking time, 9 hours has a higher dispersion of carbon up to 41%-51% compare to 8 hours and 7 hours. By using paste carburizing, it has more potential of carbon atom to merge the microstructure to transform into cementite (1.53 wt% C) compare to powder (0.97 wt% C), which increases the hardness of carburized steel (13% higher).


1987 ◽  
Vol 109 (3) ◽  
pp. 257-264 ◽  
Author(s):  
E. M. Kopalinsky ◽  
P. L. B. Oxley

Experiments show that the cold working of low carbon steel work materials can improve their machinability by reducing cutting forces and improving surface finish and tool life. The somewhat paradoxical result of reducing cutting forces by cold working a material so that its hardness is increased is explained in this paper by using a machining theory which takes account of the flow stress properties of the work material and can thus allow for the effects of cold working.


MRS Advances ◽  
2017 ◽  
Vol 2 (62) ◽  
pp. 3909-3915
Author(s):  
Héctor M. Barbosa Cásarez ◽  
Araceli Espinoza Vázquez ◽  
Francisco J. Rodríguez-Gomez

AbstractPhenylcoumarin glucoside (4-PC) is a compound extracted from the plant Hintona latiflora and was studied as inhibitor for AISI 1018 steel corrosion in 3% NaCl solution using potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) techniques, which may find application as eco-friendly corrosion inhibitors. The 4-PC provides inhibitor properties that protect AISI 1018 low carbon steel against corrosion at low concentrations (5 ppm) obtained by EIS. Polarization studies showed that the inhibitor was of mixed type. The inhibition efficiency by the two electrochemical techniques shows similar results. The inhibitor adsorption was demonstrated to be a combined process (physisorption and chemisorption) according to the Langmuir isotherm.


Author(s):  
Ya.G. Avdeev ◽  
◽  
A.V. Panova ◽  
T.E. Andreeva ◽  
Yu.I. Kuznetsov ◽  
...  

Corrosion of 08PS low-carbon steel was studied in a wide temperature range t = 25—100 °C in 1 M H2SO4 + 1 M H3PO4, 2 M H2SO4 и 2 M H3PO4, inhibited by the binary mixture IFKhAN-92 + KNCS (a molar ratio of components 9:1) and a three-component mixture IFKhAN-92 + KNCS + urotropine (9:1:400), in the presence of high concentrations of Fe(III) and Fe(II) salts, as well as in their joint presence. It is shown that under experimental conditions the corrosion inhibitors under study provide effective protection of steel in 1 M H2SO4 + 1 M H3PO4 even in the presence of Fe(III), Fe(II) salts or their mixtures. The highest protective effects are provided by a three-component inhibitor mixture. Under similar conditions in individual 2 M H3PO4 and, especially, 2 M H2SO4, the protective effects of inhibitors are lower. A stronger deceleration of steel corrosion by composite inhibitors based on IFKhAN-92 in H2SO4 + H3PO4 solutions containing Fe(III) salts in comparison with similar solutions of individual H2SO4, is largely due to the binding of Fe(III) cations by phosphate anions into complexes, that significantly reduces their chemical activity and, as a result the corrosion rate of steel.


2009 ◽  
Vol 79-82 ◽  
pp. 143-146
Author(s):  
Jiang Hua Ma ◽  
Dong Ping Zhan ◽  
Zhou Hua Jiang ◽  
Ji Cheng He

In order to understand the effects of deoxidizer such as aluminium, titanium and magnesium on the impact toughness of heat affected zone (HAZ), three low carbon steels deoxidized by Ti-Al, Mg and Ti-Mg were obtained. After smelting, forging, rolling and welding simulation, the effects of Al, Ti and Mg addition on the impact toughness of HAZ in low carbon steel were studied. The inclusion characteristics (size, morphology and chemistry) of samples before welding and the fracture pattern of the specimens after the Charpy-type test were respectively analyzed using optical microscope and scanning electron microscopy (SEM). The following results were found. The density of inclusion in Ti-Mg deoxidized steel is bigger than Ti-Al deoxidized steel. The average diameter is decreased for the former than the latter. The addition of Ti-Mg can enhance the impact toughness of the HAZ after welding simulation. The maximal value of the impact toughness is 66.5J/cm2. The complex particles of MgO-TiOx-SiO2-MnS are most benefit to enhance impact toughness. The improvement of HAZ is attributable to the role of particle pinning and the formation of intergranular ferrite.


2016 ◽  
Vol 369 ◽  
pp. 59-64
Author(s):  
Muhammad Ali Abro ◽  
Dong Bok Lee

A low carbon steel was hot-dip aluminized, and corroded in the N2/0.4%H2S-mixed gas at 650-850°C for 20-50 h in order to find the effect of aluminizing on the high-temperature corrosion of the low carbon steel in the H2S environment. A thin Al topcoat and a thick Al-Fe alloy layer that consisted primarily of Al5Fe2 and some FeAl and Al3Fe formed on the surface after aluminizing. The corrosion rate increased with an increase in temperature. Hot-dip aluminizing increased the corrosion resistance of the carbon steel through forming a thin protective α-Al2O3 scale on the surface. The α-Al2O3 scale was susceptible to spallation. During corrosion, internal voids formed in the Al-Fe alloy layer, where the Al5Fe2, AlFe, and Al3Fe compounds gradually transformed through interdiffusion.


2019 ◽  
Vol 3 (1) ◽  
pp. 263-276 ◽  
Author(s):  
Hameed B. Mahood ◽  
Asaad H. Sayer ◽  
Athraa H. Mekky ◽  
Anees A. Khadom

Sign in / Sign up

Export Citation Format

Share Document