scholarly journals Statistical analysis of genetic diversity using faba bean landraces database

2020 ◽  
Vol 12 (3) ◽  
pp. 211-215
Author(s):  
N. Velcheva ◽  
S. Petrova

Abstract. Evaluation of genetic diversity among landraces could be an invaluable aid related to the sustainable use of ex situ collections. Statistical methods are currently available for analysis of databases from investigation of stored germplasm. Faba bean (Vicia faba L.) is a self-pollinating with high percentage of foreign pollination legume crop with a great importance for food and forage due to its high protein content as well as the important role in soil fertility and nitrogen fixation. The local populations are well adapted to specific agro-climatic conditions in the growing areas and are a rich initial material for the breeding programs. The purpose of this study is to establish the genetic diversity of 21 Bulgarian faba bean landraces by important traits in order to review the current potential of conserved germplasm for its sustainable use. All genotypes, included in the study, are collected from expeditions in the country, recorded in the National Register for Plant Genetic Resources and long term stored at the National Genebank. They are characterized according to the International Faba Bean Descriptors. The cluster analysis results show a high genetic diversity in the collection and the variability of each studied trait is presented. The factor analysis, which complements the cluster analysis, gives a reason to group the genotypes with their features into groups that have a breeding value. Genetic diversity in the studied collection has been identified and some of the landraces could be included in future breeding programs.

HortScience ◽  
2018 ◽  
Vol 53 (3) ◽  
pp. 275-282 ◽  
Author(s):  
Saadat Sarikhani Khorami ◽  
Kazem Arzani ◽  
Ghasem Karimzadeh ◽  
Abdolali Shojaeiyan ◽  
Wilco Ligterink

Plant genetic diversity is the fundamental of plant-breeding programs to improve desirable characteristics. Hence, evaluation of genetic diversity is the first step in fruit-breeding programs. Accordingly, the current study was carried out to evaluate 25 superior walnut genotypes in respect of phenotypic and cytological characteristics. For this purpose, 560 walnut genotypes in southwest of Iran were evaluated based on UPOV and International Plant Genetic Resources Institute (IPGRI) descriptor. After a 2-year primary evaluation, 25 superior genotypes were selected for future phenotypic and genome size assessment. Flow cytometry was used to estimate genome size of the selected superior genotypes. A high genetic diversity was found in walnut population collected from the southwest of Iran. The selected superior genotypes had high yield, lateral bearing, thin-shell thickness (0.90–1.64 mm), high nut (12.54–19.80 g) and kernel (7.02–9.91 g) weight with light (L) to extra light (EL) kernel color which easily can be removed from the shell. Also, FaBaCh2 genotype turned out to be protogynous being important as a pollinizer cultivar. In addition to extensive phenotypic analysis, genome size was determined. The studied genotypes were diploid (2n = 2x = 32) and varied in genome size from 1.29 (FaBaAv2) to 1.40 pg (FaBaNs12). Correlation analysis showed that lateral bearing, budbreak date, nut size, and weight were the main variables contributing to walnut production. A linear relationship was found between genome size and nut weight (r = 0.527**), kernel weight (r = 0.551**), and nut size index (NSI) (r = 0.487**). Therefore, genome size can be considered as a strong and valuable tool to predict nut and kernel weight and nut size.


2010 ◽  
Vol 10 (4) ◽  
pp. 298-304 ◽  
Author(s):  
Tesfahun Alemu Setotaw ◽  
Eveline Teixeira Caixeta ◽  
Guilherme Ferreira Pena ◽  
Eunize Maciel Zambolim ◽  
Antonio Alves Pereira ◽  
...  

AFLP, RAPD and SSR molecular markers were used to study the genetic diversity and genetic structure of the Híbrido de Timor germplasm. The principal coordinate analysis, UPGMA cluster analysis based on genetic dissimilarity of Jaccard, Bayesian model-based cluster analysis, percentage of polymorphic loci, Shannon's information index and Nei gene diversity were employed to assess the genetic diversity. The analyses demonstrated a high genetic diversity among Híbrido de Timor accessions. UPGMA and Bayesian cluster analyses grouped the accessions into three clusters. The genetic structure of Híbrido de Timor is reported. The management of Híbrido de Timor germplasm variability and its potential use in breeding programs are discussed.


Botany ◽  
2010 ◽  
Vol 88 (8) ◽  
pp. 765-773 ◽  
Author(s):  
Ivandilson Pessoa Pinto de Menezes ◽  
Paulo Augusto Vianna Barroso ◽  
Lúcia Vieira Hoffmann ◽  
Valeska Silva Lucena ◽  
Marc Giband

Mocó cotton ( Gossypium hirsutum  L. race marie-galante (Watt) Hutch.) is a potential source of valuable alleles for breeding programs, mainly because of its great adaptability to semi-arid conditions. With the aim of quantifying mocó cotton genetic variability, 187 plants collected in the northeast of Brazil were evaluated using 12 microsatellite markers. A total of 62 alleles were amplified, ranging from three to eight polymorphic alleles per locus. Total genetic diversity was high (0.52), and when measured on a per state basis, was of 0.37 on average. The population showed a low level of heterozygozity (HO = 0.16), reflecting a high level of endogamy (FIS = 0.67). Phylogenetic analysis using the neighbor-joining method revealed that plants sampled in different states tended to cluster according to their geographic origin, except for those collected in the states of Paraíba and Rio Grande do Norte, which grouped together. Plants from the state of Piauí formed two groups, one with an apparent allelic contribution from G. barbadense, while the second group of plants was closer to those from the states of Paraíba and Rio Grande do Norte. Despite the high genetic diversity that was observed in the remaining populations, urgent conservation efforts should be undertaken, owing to the high level of endogamy and accelerated extinction process that characterizes these populations. Such efforts should focus on the collection and ex situ maintenance of representative genetic diversity.


2018 ◽  
Vol 7 (2) ◽  
pp. 2042 ◽  
Author(s):  
Ritu Mahajan ◽  
Azhar Javed ◽  
Nisha Kapoor

Wild pomegranate is distributed in three states of India. However, genomic information is rare in this plant. In this paper we studied the genetic diversity of wild pomegranate collected from different places of Himachal Pradesh using RAPD primers. A high degree of polymorphism of 80.7% was observed. Cluster analysis demarcated the accessions into two distinct groups. The genetic dissimilarity index calculated varied from 0.16 to 0.68 for twenty-one wild pomegranate genotypes. The presence of high genetic diversity can be useful for understanding the process of domestication and cultivated pomegranate breeding programs.


Author(s):  
Dainis Edgars Ruņģis ◽  
Baiba Krivmane

Abstract Changing climatic conditions are transforming the ecological and silvicultural roles of broadleaf tree species in northern Europe. Small-leaved lime (Tilia cordata Mill.) is distributed throughout most of Europe, and is a common broadleaf species in Latvia. This species can tolerate a broad range of environmental and ecological conditions, including temperature, water availability, and soil types. The aim of this study was to assess the genetic diversity and differentiation of Latvian T. cordata populations using nuclear microsatellite markers developed for Tilia platyphyllos. After testing of 15 microsatellite markers, Latvian T. cordata samples were genotyped at 14 micro-satellite loci. Latvian T. cordata populations had high genetic diversity, and were not overly isolated from each other, with moderate gene flow between populations. No highly differentiated populations were identified. Vegetative reproduction was identified in most analysed populations, and almost one-third of analysed individuals are of clonal origin. T. cordata has high timber production potential under the current climatic and growth conditions in Latvia, and therefore this species has potential for use in forestry, as well as playing a significant role in maintaining biodiversity and other ecosystem services.


Author(s):  
Paula Bramel ◽  

This chapter reviews the key issues and challenges facing genebanks in preserving crop genetic diversity ex situ. Local crop genetic diversity is challenged with changes in land use, urbanization, land degradation, changes in agricultural practises, availability of improved varieties, changes in market preference, and the impact of climate change. Efforts have been made to secure plant genetic resources ex situ for future use but there are significant issues related to cost effective, efficient, secure, rational, and sustainable long-term ex situ conservation. It begins by addressing issues for the composition of ex situ collections and moves on to discuss issues for routine operations for conservation. The chapter also highlights issues for the use of conserved genetic resources, before concluding with a summary of why the development of sustainable genebank systems is so important.


2016 ◽  
Vol 82 (14) ◽  
pp. 4330-4339 ◽  
Author(s):  
G. Laloi ◽  
J. Montarry ◽  
M. Guibert ◽  
D. Andrivon ◽  
D. Michot ◽  
...  

ABSTRACTAscochyta blight, caused by the necrotrophic ascomyceteDidymella pinodes, is responsible for severe losses in winter and spring pea crops. Despite different climatic conditions, epidemics on winter and spring crops are due to a single population ofD. pinodes, suggesting gene flow either between the two crops or from reservoir sources during the cropping season. This should lead to similar pathogenicity characteristics in isolates sampled from the two crops. However, these hypotheses have never been formally tested. We therefore sampled a total of 520D. pinodesstrains throughout a growing season from winter and spring pea plots (WP and SP, respectively) and from winter and spring trap plants (TWP and TSP). Amplified fragment length polymorphism (AFLP) markers revealed high genetic diversity within subpopulations, whereas pathogenicity tests showed that mean aggressiveness increases over the course of an epidemic. These results support the idea that alloinoculum contributes to the carryover of epidemics between winter and spring crops and that the most aggressive isolates are selected as an epidemic progresses.IMPORTANCEAscochyta blight, caused byDidymella pinodes, is responsible for severe losses in pea crops. While previous studies have shown that ascochyta blight epidemics on winter and spring crops are due to a single population ofD. pinodes, suggesting that isolates from the two crops present similar pathogenicity characteristics, that hypothesis have never been tested. Genetic analysis of subpopulations sampled throughout a growing season from winter and spring pea plots revealed high genetic diversity within subpopulations, whereas pathogenicity tests showed that mean aggressiveness increases over the course of an epidemic.


2003 ◽  
Vol 1 (1) ◽  
pp. 19-29 ◽  
Author(s):  
Toby Hodgkin ◽  
V. Ramanatha Rao ◽  
Angélica Cibrian-Jaramillo ◽  
Samy Gaiji

AbstractPlant genetic resources are conserved so that they can be used to improve crop plant pro- duction and in other ways. However, it is often asserted that use of ex situ conserved germplasm is inadequate and that genetic diversity maintained in genebanks is underutilized. In part, this reflects an incomplete recognition of what constitutes use of plant genetic resources, and of the many different ways in which material from genebanks contributes to improved agricultural production. Based on recent information from surveys of distribution of germplasm from genebanks, and from surveys of users, we suggest that the evidence indicates that there is substantial use of ex situ conserved materials for a wide range of different uses. We suggest that barriers to use of ex situ conserved germplasm may often result from a lack in numbers of users, and from limitations in capacity to effectively utilize the genetic diversity present in genebanks to reduce genetic vulnerability and increase sustainability in modern production systems.


2019 ◽  
Vol 41 (4) ◽  
Author(s):  
Kyvia Pontes Teixeira das Chagas ◽  
Ageu da Silva Monteiro Freire ◽  
Luciana Gomes Pinheiro ◽  
Cristiane Gouvêa Fajardo ◽  
Fábio de Almeida Vieira

Abstract This study aimed to estimate the genetic diversity of three Elaeis guineensis populations in Rio Grande do Norte state, as well as to verify the decreases in effective population size. The population with the highest polymorphism was MAT (Mata) with+ 57 loci (72%), followed by RIA (Riacho) with 54 loci (68%) and HOR (Horta) with 34 loci (43.03%). The RIA population was shown to be the most genetically diverse, with Nei (h = 0.28) and Shannon (I = 0.41) diversity indices. There was high genetic differentiation among populations (AMOVA, analysis of molecular variance = 42%), which was separated into three distinct genetic groups according to a Bayesian analysis. There was a significant population decrease (P < 0.05) for the HOR population in the IAM (infinite allele model) and SMM (stepwise mutation model), and for the RIA population in the IAM. The data obtained in this study may support ex-situ conservation projects for Elaeis guineensis, contributing to the selection of genotypes and their sustainable use.


Author(s):  
Ahmed Medhat Mohamed Al-Naggar ◽  
Mohamed Abd El-Maboud Abd El-Shafi ◽  
Mohamed Helmy El-Shal ◽  
Ali Hassan Anany

To increase the genetic progress in wheat (Triticum aestivum L.) yield, breeders search for germplasm of high genetic diversity, one of them is the landraces. The present study aimed at evaluating genetic diversity of 20 Egyptian wheat landraces and two cultivars using microsatellite markers (SSRs). Ten SSR markers amplified a total of 27 alleles in the set of 22 wheat accessions, of which 23 alleles (85.2%) were polymorphic. The majority of the markers showed high polymorphism information content (PIC) values (0.67-0.94), indicating the diverse nature of the wheat accessions and/or highly informative SSR markers used in this study. The genotyping data of the SSR markers were used to assess genetic variation in the wheat accessions by dendrogram. The highest genetic distance was found between G21 (Sakha 64; an Egyptian cultivar) and the landrace accession No. 9120 (G11). These two genotypes could be used as parents in a hybridization program followed by selection in the segregating generations, to identify some transgressive segregates of higher grain yield than both parents. The clustering assigned the wheat genotypes into four groups based on SSR markers. The results showed that the studied SSR markers, provided sufficient polymorphism and reproducible fingerprinting profiles for evaluating genetic diversity of wheat landraces. The analyzed wheat landraces showed a good level of genetic diversity at the molecular level. Molecular variation evaluated in this study of wheat landraces can be useful in traditional and molecular breeding programs.


Sign in / Sign up

Export Citation Format

Share Document