scholarly journals The response of soil physicochemical properties and soil microbial respiration to different land use types: A case of areas in Central-North Hungary region

Author(s):  
Tsedekech Gebremeskel Weldmichael ◽  
Erika Michéli ◽  
Barbara Simon

Land use change may modify key soil attributes, influencing the capacity of soil to maintain ecological functions. Understanding the effects of land use types (LUTs) on soil properties is, therefore, crucial for the sustainable utilization of soil resources. This study aims to investigate the impact of LUT on primary soil properties. Composite soil samples from eight sampling points per LUT (forest, grassland, and arable land) were taken from the top 25 cm of the soil in October 2019. The following soil physicochemical parameters were investigated according to standard protocols: soil organic matter (SOM), pH, soil moisture, NH4+–N, NO3––N, AL-K2O, AL-P2O5, CaCO3, E4/E6, cation exchange capacity (CEC), base saturation (BS), and exchangeable bases (Ca2+, Mg2+, K+, and Na+). Furthermore, soil microbial respiration (SMR) was determined based on basal respiration method. The results indicated that most of the investigated soil properties showed significant difference across LUTs, among which NO3––N, total N, and K2O were profoundly affected by LUT (p ≤ 0.001). On the other hand, CEC, soil moisture, and Na+ did not greatly change among the LUTs (p ≥ 0.05). Arable soils showed the lowest SOM content and available nitrogen but the highest content of P2O5 and CaCO3. SMR was considerably higher in grassland compared to arable land and forest, respectively. The study found a positive correlation between soil moisture (r = 0.67; p < 0.01), Mg2+ (r = 0.61; p < 0.01), and K2O (r = 0.58; p < 0.05) with SMR. Overall, the study highlighted that agricultural practices in the study area induced SOM and available nitrogen reduction. Grassland soils were more favorable for microbial activity.

2018 ◽  
Vol 69 (3) ◽  
pp. 160-168
Author(s):  
Jozef Varga ◽  
Radoslava Kanianska ◽  
Ján Spišiak

Abstract The aim of the study was to analyse the impact of land use and altitudinal gradient including geological conditions on selected soil physical properties with subsequent effect on earthworms as important soil organisms. The research was conducted at three study sites (Očová – OC, Tajov – TA, Liptovská Teplička – LT) situated in the different climatic and natural conditions of Slovakia each with 3 plots differing in land use (arable land - AL, permanent grasslands – PG, forest land – FL). During 2014 over two periods, we measured soil penetration resistance (PR) with total depth of the measurement (DP) and soil moisture (SM). Earthworms were hand sorted counted and weighed. We found out high variability of measured parameters conditioned by time, space (altitudinal gradient) and land use. PR values of all measurements ranged from 0.19 to 5.00 MPa, DP values from 0.02 to 0.80 m and soil moisture from 2 to 50%. Paired samples test confirmed differences between different land use types mainly between AL and FL plots. There were confirmed significant differences between three ecological gradients in all observed properties with one exception. Correlations among observed variables under different altitudinal gradients and land use types were found. The earthworm density and biomass was significantly higher in permanent grasslands compared to forest and arable land. In arable land, the earthworm density and biomass negatively correlated with the penetration resistance and positively with the depth of the total measurements. In permanent grasslands earthworm biomass positively correlated with soil moisture.


2021 ◽  
Author(s):  
Shahab IbrahimPour ◽  
Alireza KhavaninZadeh ◽  
Ruhollah Taghizadeh mehrjardi ◽  
Hans De Boeck ◽  
Alvina Gul

Abstract Destructive mining operations are affecting large areas of natural ecosystems, especially in arid lands. The present study aims at investigating the impact of iron mine exploitation on vegetation and soil in Nodoushan (Yazd province, central Iran). Based on the dominant wind, topography, slope, vegetation and soil of the area, soil and vegetation parameters close to ​the mine were recorded and analyzed according to the distance from the mine. In order to obtain the vegetation cover, a transect and plot on the windward and leeward side of the mine, with 100 m intervals and three replicates at each sampling location was used, yielding 96 soil samples. The amount of dust on the vegetation, the seed weight and seed germination rate of Artemisia sp. as the dominant species within the area, and the soil microbial respiration were measured. The relationship between vegetation cover and distance from the mine was not linear, which was due to an interplay between pollution from the mine and local grazing, while other factors did increase or decrease linearly. The results showed that, as the distance from the mine increased, the weight of 1000 seeds of Artemisia sp. was significantly increased from 271 to 494 mg and seed germination rate and soil microbial respiration were significantly increased from 11.7 to 48.4 % and from 4.5 to 5.9 mg CO2 g− 1 soil day− 1 respectively, while the amount of dust significantly decreased from 43.5 to 6 mg (g plant)−1 between the distance of 100 to 600 m from the mine in the leeward direction. A similar trend was observed in the windward side, though negative effects were lower compared to the same distance along the leeward sample locations. The direct and indirect effects on plant growth and health from mining impacts generally decreased linearly with increasing distance from the mine, up to at least 600 m. Our study serves as a showcase for the potential of bio-indicators as a cost-effective method for assessing impacts of mining activities on the surrounding environment.


2019 ◽  
Author(s):  
Romane Berthelin ◽  
Michael Rinderer ◽  
Bartolomé Andreo ◽  
Andy Baker ◽  
Daniela Kilian ◽  
...  

Abstract. Karst systems that are characterized by a high subsurface heterogeneity are posing a challenge to study their complex recharge processes. Experimental methods to study karst processes mostly focus on characterizing the entire aquifer. Despite their important role for recharge processes, the limited focus has been given on studies of the soil and epikarst and most available research has been performed at sites of similar latitudes. In our study, we describe a new monitoring concept that allows the improvement of soil and epikarst processes understanding by covering different karst systems with different land cover at different climate regions. First, we describe the site selection and the experimental setup. Then we describe the five individual sites and their soil profiles. We also present some preliminary data and highlight the potential of the data for future research aimed at answering the relevant research questions: (1) How do the soil and epikarst heterogeneities influence water flow and storage processes in the karst vadose zone? (2) What is the impact of the land cover type on karstic groundwater recharge and evapotranspiration? (3) What is the impact of climate on karstic groundwater recharge and evapotranspiration? In order to answer these questions, we monitor soil moisture, which controls the partitioning of rainfall into infiltration, soil water storage, evapotranspiration, and groundwater recharge processes. We installed a soil moisture-monitoring network at five different climate regions: in Puerto Rico (tropical), Spain (Mediterranean), the United Kingdom (humid oceanic), Germany (humid mountainous), and Australia (dry semi-arid). At each of the five sites, we defined two 20 m × 20 m plots to install soil moisture probes under different land use types (forest and grassland). At each plot, 15 soil moisture profiles were installed with probes at different depths from the top soil to the epikarst (over 400 soil moisture probes were installed). Our first results show that the monitoring network provides new insights into the soil moisture dynamics of the five study sites and that significant differences prevail among forest and grassland sites. Some profiles are characterized by sequential reactions of soil moisture, i.e., the uppermost probe reacts first and the lowest probe reacts last, while at other profiles, we find non-sequential reactions that we interpret to result from preferential flow processes. While the former favours storage in the soil providing water for evapotranspiration, the latter can be seen as an indicator for the initiation of fast and preferential recharge into the karst system. Covering the spatiotemporal variability of these processes through a large number of installed probes, our monitoring network will allow to develop a new conceptual understanding of evapotranspiration and groundwater recharge processes in karst regions across different climate regions and land use types, and provide the base for quantitative assessment with physically-based modelling approaches in the future.


2016 ◽  
Vol 15 (6) ◽  
pp. 1376-1384 ◽  
Author(s):  
Yan-jie ZHANG ◽  
Yue YAN ◽  
Xiang-ping FU ◽  
Jie YANG ◽  
Su-yan ZHANG ◽  
...  

2020 ◽  
Vol 71 (2) ◽  
pp. 43-52
Author(s):  
Tsedekech Gebremeskel Weldmichel ◽  
Tamás Szegi ◽  
Lubangakene Denish ◽  
Ravi Kumar Gangwar ◽  
Erika Michéli ◽  
...  

Author(s):  
Liang Zhang ◽  
Tingting Xue ◽  
Feifei Gao ◽  
Lin Yuan ◽  
Zhilei Wang ◽  
...  

Desertified land reclamation for the purposes of winegrape cultivation can profoundly alter the properties of the underlying soil and the microbial communities therein. Herein, we assessed the effects of such reclamation of non-productive desert land on the soil microbial communities associated with the resultant vineyards, and to identify key soil properties related to these changes. Soil was collected from natural desert land (DL) and from different reclaimed vineyard types: Cabernet Sauvignon (CS), Merlot (M), Chardonnay (C), and Italian Riesling (IR). High-throughput sequencing was used to assess microbial community composition and diversity in these samples. Significant differences in soil organic carbon (SOC), total nitrogen, available nitrogen, available phosphorus, and pH were detected when comparing soil from DL and reclaimed lands. CS, M, C, and IR soils exhibited higher relative Actinobacteria, Proteobacteria, and Ascomycota abundance, while DL soil exhibited higher relative Acidobacteria and Mortierellomycota abundance. In total, 165 and 55 bacterial and fungal amplicon sequence variants or operational taxonomic units (ASVs/OTUs) were shared across land use types. Following reclamation, soil bacteria ASVs/OTUs in CS, M, C, and IR soils rose to 2846, 3191, 7630, and 6373, respectively. Biomarkers of these different land use types were successfully identified via an LDA Effect Size (LEfSe) approach, while key soil properties including pH, SOC, and available nitrogen were found to be associated with these changes in microbial community structural composition following reclamation. As such, our data indicate that viticulture in desertified regions can enhance soil properties and microbial diversity, thereby supporting sustainable land use.


2021 ◽  
Author(s):  
Florian Gschwend ◽  
Martin Hartmann ◽  
Johanna Mayerhofer ◽  
Anna Hug ◽  
Jürg Enkerli ◽  
...  

Soil microbial diversity has major influences on ecosystem functions and services. However, due to its complexity and uneven distribution of abundant and rare taxa, quantification of soil microbial diversity remains challenging and thereby impeding its integration into long-term monitoring programs. Using metabarcoding, we analyzed soil bacterial and fungal communities over five years at thirty long-term soil monitoring sites from the three land-use types, arable land, permanent grassland, and forest. Unlike soil microbial biomass and alpha-diversity, microbial community compositions and structures were site- and land-use-specific with CAP reclassification success rates of 100%. The temporally stable site core communities included 38.5% of bacterial and 33.1% of fungal OTUs covering 95.9% and 93.2% of relative abundances. We characterized bacterial and fungal core communities and their land-use associations at the family-level. In general, fungal families revealed stronger land-use type associations as compared to bacteria. This is likely due to a stronger vegetation effect on fungal core taxa, while bacterial core taxa were stronger related to soil properties. The assessment of core communities can be used to form cultivation-independent reference lists of microbial taxa, which may facilitate the development of microbial indicators for soil quality and the use of soil microbiota for long-term soil biomonitoring.


2020 ◽  
Vol 69 (3) ◽  
pp. 263-280
Author(s):  
Gábor Nagy ◽  
Dénes Lóczy ◽  
Szabolcs Czigány ◽  
Ervin Pirkhoffer ◽  
Szabolcs Ákos Fábián ◽  
...  

Increasingly severe weather extremes are predicted as one of the consequences of climate change. According to climatic models, weather extremities induce higher risks for both flood and drought in the Carpathian Basin. Throughout the 19th and 20th centuries, flood control relied on cost-intensive engineering structures, but recently ecological solutions have come to the fore. Flood hazard on major rivers could be mitigated if multiple and cumulative water retention opportunities are exploited on the upper sections of tributary catchments. Appropriate land use and landscape pattern changes can shift the infiltration to run-off ratio to the benefit of the former. In the Transdanubian Hills of Southwest Hungary three study areas with different agricultural land use types had been selected and investigated for the impact of landscape micro-features on soil moisture retention capacity with the purpose of conserving water from wet periods for the times of drought. Marked differences in moisture dynamics have been detected between arable land, grasslands and orchards. This fact underlines the need for integrated soil and water conservation. Drought risk was found to be the highest on ploughland. Favourable soil water budgets have been observed in the fields as a function of land use: less intensive types, like grazing land and orchards (particularly tree rows), were identified as places of high water retention capacity. Although serious water stress conditions were also reached in the orchard, it markedly mitigated drought conditions compared to the ploughland.


2020 ◽  
Vol 7 (1) ◽  
pp. 91
Author(s):  
Júlio Barboza Chiquetto ◽  
Maria Elisa Siqueira Silva ◽  
Rita Yuri Ynoue ◽  
Flávia Noronha Dutra Ribieiro ◽  
Débora Souza Alvim ◽  
...  

A poluição do ar é influenciada por fatores naturais e antropogênicos. Quatro pontos de monitoramento (veicular, comercial, residencial e background urbano (BGU))da poluição do ar em São Paulo foram avaliados durante 16 anos, revelando diferenças significativas devidoao uso do solo em todas as escalas temporais. Na escala diurna, as concentrações de poluentes primários são duas vezes mais altas nos pontos veicular e residencial do que no ponto BGU, onde a concentração de ozonio (O3) é 50% mais alta. Na escala sazonal, as concentrações de monóxido de carbono(CO) variaram em 80% devido ao uso do solo, e 55% pela sazonalidade.As variações sazonais ede uso do solo exercem impactos similares nas concentrações de O3 e monóxido de nitrogênio (NO). Para o material particulado grosso (MP10) e o dióxido de nitrogênio(NO2), as variações sazonais são mais intensas do que as por uso do solo. Na série temporal de 16 anos, o ponto BGU apresentou correlações mais fortes e significativas entre a média mensal de ondas longas (ROL) e o O3 (0,48) e o MP10 (0,37), comparadas ao ponto veicular (0,33 e 0,22, respectivamente). Estes resultados confirmam que o uso do solo urbano tem um papel significativo na concentração de poluentes em todas as escalas de análise, embora a sua influência se torne menos pronunciada em escalas maiores, conforme a qualidade do ar transita de um sistema antropogênico para um sistema natural. Isto poderá auxiliar decisões sobre políticas públicas em megacidades envolvendo a modificação do uso do solo.


Sign in / Sign up

Export Citation Format

Share Document